等离子体电解氧化和水热协同作用增强钛表面的抗菌性能和生物相容性

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-10-17 DOI:10.1002/adem.202401305
Arash Mazinani, Md Julker Nine, Hadi Rastin, Roberto Chiesa, Gabriele Candiani, Paolo Tarsini, Reza Ghomashchi, Dusan Losic
{"title":"等离子体电解氧化和水热协同作用增强钛表面的抗菌性能和生物相容性","authors":"Arash Mazinani,&nbsp;Md Julker Nine,&nbsp;Hadi Rastin,&nbsp;Roberto Chiesa,&nbsp;Gabriele Candiani,&nbsp;Paolo Tarsini,&nbsp;Reza Ghomashchi,&nbsp;Dusan Losic","doi":"10.1002/adem.202401305","DOIUrl":null,"url":null,"abstract":"<p>Plasma electrolytic oxidation (PEO) is a well-established electrochemical method to modify titanium (Ti) surfaces for various industrial applications, including automobile, aerospace, nuclear, sports, defense, and biomedical industries. However, PEO surfaces, with their subsequent nanostructural modification to achieve enhanced antibacterial properties, osseointegration, and biocompatibility on biomedical implants are barely explored. This study investigates the combined approach of PEO and hydrothermal (HT) processes to introduce a range of nanostructures on PEO-induced porous titania for enhanced antibacterial and improved osseointegration properties. Different fabrication conditions of combined PEO and HT process enabled the fabrication of multidimensional nano-morphologies, such as blades, needles, belts, and grass that exhibit mechano-bactericidal properties with enhanced biocompatibility. Antibacterial performance shows that nanostructures generated using HT on the acidic PEO process have excellent antibacterial activity, destroying 88% of <i>E. coli</i> and ≈99% of <i>S. aureus</i> colonies after 24 h incubation. All these fabricated structures show very high biomineralization ability, as confirmed by simulated body fluid (SBF) tests. This study provides valuable contributions showing the potential of low-cost PEO technology combined with other surface engineering methods for scalable modification and improvements of titanium implants with advanced antibacterial and biointegration properties.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Antibacterial Properties and Biocompatibility of Titanium Surfaces through Synergy of Plasma Electrolytic Oxidation and Hydrothermal Process\",\"authors\":\"Arash Mazinani,&nbsp;Md Julker Nine,&nbsp;Hadi Rastin,&nbsp;Roberto Chiesa,&nbsp;Gabriele Candiani,&nbsp;Paolo Tarsini,&nbsp;Reza Ghomashchi,&nbsp;Dusan Losic\",\"doi\":\"10.1002/adem.202401305\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Plasma electrolytic oxidation (PEO) is a well-established electrochemical method to modify titanium (Ti) surfaces for various industrial applications, including automobile, aerospace, nuclear, sports, defense, and biomedical industries. However, PEO surfaces, with their subsequent nanostructural modification to achieve enhanced antibacterial properties, osseointegration, and biocompatibility on biomedical implants are barely explored. This study investigates the combined approach of PEO and hydrothermal (HT) processes to introduce a range of nanostructures on PEO-induced porous titania for enhanced antibacterial and improved osseointegration properties. Different fabrication conditions of combined PEO and HT process enabled the fabrication of multidimensional nano-morphologies, such as blades, needles, belts, and grass that exhibit mechano-bactericidal properties with enhanced biocompatibility. Antibacterial performance shows that nanostructures generated using HT on the acidic PEO process have excellent antibacterial activity, destroying 88% of <i>E. coli</i> and ≈99% of <i>S. aureus</i> colonies after 24 h incubation. All these fabricated structures show very high biomineralization ability, as confirmed by simulated body fluid (SBF) tests. This study provides valuable contributions showing the potential of low-cost PEO technology combined with other surface engineering methods for scalable modification and improvements of titanium implants with advanced antibacterial and biointegration properties.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-10-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401305\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401305","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

等离子体电解氧化(PEO)是一种完善的电化学方法来修饰钛(Ti)表面的各种工业应用,包括汽车,航空航天,核,体育,国防和生物医学工业。然而,PEO表面及其随后的纳米结构修饰以实现生物医学植入物的增强抗菌性能,骨整合和生物相容性的研究很少。本研究探讨了PEO和水热(HT)工艺相结合的方法,在PEO诱导的多孔二氧化钛上引入一系列纳米结构,以增强抗菌和改善骨整合性能。复合PEO和HT工艺的不同制备条件使其能够制备出多维纳米形态,如叶片、针状、带状和草状,这些纳米形态具有机械杀菌性能和增强的生物相容性。抑菌性能表明,HT在酸性PEO工艺上生成的纳米结构具有优异的抑菌活性,孵育24 h后可杀灭88%的大肠杆菌和约99%的金黄色葡萄球菌菌落。模拟体液(SBF)试验证实,这些制备的结构具有非常高的生物矿化能力。这项研究提供了有价值的贡献,显示了低成本的PEO技术与其他表面工程方法相结合,在具有先进抗菌和生物整合性能的钛植入物的可扩展改性和改进方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Enhancing Antibacterial Properties and Biocompatibility of Titanium Surfaces through Synergy of Plasma Electrolytic Oxidation and Hydrothermal Process

Plasma electrolytic oxidation (PEO) is a well-established electrochemical method to modify titanium (Ti) surfaces for various industrial applications, including automobile, aerospace, nuclear, sports, defense, and biomedical industries. However, PEO surfaces, with their subsequent nanostructural modification to achieve enhanced antibacterial properties, osseointegration, and biocompatibility on biomedical implants are barely explored. This study investigates the combined approach of PEO and hydrothermal (HT) processes to introduce a range of nanostructures on PEO-induced porous titania for enhanced antibacterial and improved osseointegration properties. Different fabrication conditions of combined PEO and HT process enabled the fabrication of multidimensional nano-morphologies, such as blades, needles, belts, and grass that exhibit mechano-bactericidal properties with enhanced biocompatibility. Antibacterial performance shows that nanostructures generated using HT on the acidic PEO process have excellent antibacterial activity, destroying 88% of E. coli and ≈99% of S. aureus colonies after 24 h incubation. All these fabricated structures show very high biomineralization ability, as confirmed by simulated body fluid (SBF) tests. This study provides valuable contributions showing the potential of low-cost PEO technology combined with other surface engineering methods for scalable modification and improvements of titanium implants with advanced antibacterial and biointegration properties.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1