活塞环衬底上的结晶碳沉积及其对摩擦学特性、发动机性能和排放的影响

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-19 DOI:10.1002/adem.202401754
Mehmet Esen, Ali Can Yilmaz
{"title":"活塞环衬底上的结晶碳沉积及其对摩擦学特性、发动机性能和排放的影响","authors":"Mehmet Esen,&nbsp;Ali Can Yilmaz","doi":"10.1002/adem.202401754","DOIUrl":null,"url":null,"abstract":"<p>Electron cyclotron resonance-chemical vapor carbon deposition technique was altered via incorporation of nitrogen gas in the methane (CH<sub>4</sub>)-based plasma, thermal annealing of the substrates, and Arduino-controlled sample rotating mechanism to bombard the contact surface of the piston ring samples. By placing the substrates very close to the plasma gun, various carbon-based structures including graphene oxide, nanodiamond, and reduced graphene oxide were successfully deposited. The formed structures were characterized via scanning electron microscopy, atomic force microscopy, Raman spectroscopy, X-ray diffraction, and energy dispersive X-ray. Related tribological analyses such as surface hardness-roughness, coefficient of friction (COF), and wear rate were also carried out on the coated surfaces. The morphology and chemical composition of the worn surfaces were observed via SEM and EDX. The coated samples were installed in a small spark-ignition engine to determine the effect of coating on brake power (<i>P</i><sub>e</sub>), specific energy consumption (<i>β</i>), carbon monoxide (CO), and unburned hydrocarbon (UHC) emissions. Very promising results of 14% increase in surface hardness, 11% reduction in <i>β</i>, 15% enhancement in <i>P</i><sub>e</sub>, 50% decrease in COF, 12.5% and 9% improvements in CO, and UHC emissions were obtained.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Crystalline Carbon Deposition on Piston Ring Substrates and Its Effects on Tribological Characteristics, Engine Performance, and Emissions\",\"authors\":\"Mehmet Esen,&nbsp;Ali Can Yilmaz\",\"doi\":\"10.1002/adem.202401754\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Electron cyclotron resonance-chemical vapor carbon deposition technique was altered via incorporation of nitrogen gas in the methane (CH<sub>4</sub>)-based plasma, thermal annealing of the substrates, and Arduino-controlled sample rotating mechanism to bombard the contact surface of the piston ring samples. By placing the substrates very close to the plasma gun, various carbon-based structures including graphene oxide, nanodiamond, and reduced graphene oxide were successfully deposited. The formed structures were characterized via scanning electron microscopy, atomic force microscopy, Raman spectroscopy, X-ray diffraction, and energy dispersive X-ray. Related tribological analyses such as surface hardness-roughness, coefficient of friction (COF), and wear rate were also carried out on the coated surfaces. The morphology and chemical composition of the worn surfaces were observed via SEM and EDX. The coated samples were installed in a small spark-ignition engine to determine the effect of coating on brake power (<i>P</i><sub>e</sub>), specific energy consumption (<i>β</i>), carbon monoxide (CO), and unburned hydrocarbon (UHC) emissions. Very promising results of 14% increase in surface hardness, 11% reduction in <i>β</i>, 15% enhancement in <i>P</i><sub>e</sub>, 50% decrease in COF, 12.5% and 9% improvements in CO, and UHC emissions were obtained.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401754\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401754","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

通过在甲烷(CH4)基等离子体中加入氮气,对衬底进行热处理,利用arduino控制的样品旋转机构轰击活塞环样品的接触面,改变了电子回旋共振-化学气相积碳技术。通过将衬底放置在离等离子枪非常近的地方,可以成功沉积各种碳基结构,包括氧化石墨烯、纳米金刚石和还原氧化石墨烯。通过扫描电子显微镜、原子力显微镜、拉曼光谱、x射线衍射和能量色散x射线对形成的结构进行了表征。对涂层表面进行了相关的摩擦学分析,如表面硬度-粗糙度、摩擦系数(COF)和磨损率。通过SEM和EDX观察了磨损表面的形貌和化学成分。将涂层后的样品置于小型火花点火发动机中,测定涂层对制动功率(Pe)、比能耗(β)、一氧化碳(CO)和未燃烧碳氢化合物(UHC)排放的影响。结果表明:表面硬度提高14%,β降低11%,Pe提高15%,COF降低50%,CO和UHC排放分别提高12.5%和9%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Crystalline Carbon Deposition on Piston Ring Substrates and Its Effects on Tribological Characteristics, Engine Performance, and Emissions

Electron cyclotron resonance-chemical vapor carbon deposition technique was altered via incorporation of nitrogen gas in the methane (CH4)-based plasma, thermal annealing of the substrates, and Arduino-controlled sample rotating mechanism to bombard the contact surface of the piston ring samples. By placing the substrates very close to the plasma gun, various carbon-based structures including graphene oxide, nanodiamond, and reduced graphene oxide were successfully deposited. The formed structures were characterized via scanning electron microscopy, atomic force microscopy, Raman spectroscopy, X-ray diffraction, and energy dispersive X-ray. Related tribological analyses such as surface hardness-roughness, coefficient of friction (COF), and wear rate were also carried out on the coated surfaces. The morphology and chemical composition of the worn surfaces were observed via SEM and EDX. The coated samples were installed in a small spark-ignition engine to determine the effect of coating on brake power (Pe), specific energy consumption (β), carbon monoxide (CO), and unburned hydrocarbon (UHC) emissions. Very promising results of 14% increase in surface hardness, 11% reduction in β, 15% enhancement in Pe, 50% decrease in COF, 12.5% and 9% improvements in CO, and UHC emissions were obtained.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1