基于超分子晶体的长循环固体锌电池快速单离子导体

Ze Chen, Zhaodong Huang, Chenlu Wang, Dedi Li, Qi Xiong, Yanbo Wang, Yue Hou, Yanlei Wang, Ao Chen, Hongyan He, Prof. Chunyi Zhi
{"title":"基于超分子晶体的长循环固体锌电池快速单离子导体","authors":"Ze Chen,&nbsp;Zhaodong Huang,&nbsp;Chenlu Wang,&nbsp;Dedi Li,&nbsp;Qi Xiong,&nbsp;Yanbo Wang,&nbsp;Yue Hou,&nbsp;Yanlei Wang,&nbsp;Ao Chen,&nbsp;Hongyan He,&nbsp;Prof. Chunyi Zhi","doi":"10.1002/ange.202406683","DOIUrl":null,"url":null,"abstract":"<p>The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn<sup>2+</sup> transference (<i>t</i><sub>Zn</sub><sup>2+</sup>). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn<sup>2+</sup> transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis (trifluoromethylsulfonyl) imide (Zn(TFSI)<sub>2</sub>), with a structural formula identified as Zn(TFSI)<sub>2</sub>SN<sub>3</sub>. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02×10<sup>−4</sup> S cm<sup>−1</sup> at 25 °C and 3.26×10<sup>−5</sup> S cm<sup>−1</sup> at −35 °C) and a high <i>t</i><sub>Zn</sub><sup>2+</sup> (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm<sup>−2</sup>. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm<sup>−2</sup>), long-term cycling stability (83.6 % capacity retention after 70000 cycles (7 months)), wide temperature adaptability (−35 to 50 °C) and fast charging ability. The ZMC differs from SPEs in its structure for transporting Zn<sup>2+</sup> ions, significantly improving solid-state ZIBs while maintaining safety, durability, and sustainability.</p>","PeriodicalId":7803,"journal":{"name":"Angewandte Chemie","volume":"136 52","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Supramolecular Crystals based Fast Single Ion Conductor for Long-Cycling Solid Zinc Batteries\",\"authors\":\"Ze Chen,&nbsp;Zhaodong Huang,&nbsp;Chenlu Wang,&nbsp;Dedi Li,&nbsp;Qi Xiong,&nbsp;Yanbo Wang,&nbsp;Yue Hou,&nbsp;Yanlei Wang,&nbsp;Ao Chen,&nbsp;Hongyan He,&nbsp;Prof. Chunyi Zhi\",\"doi\":\"10.1002/ange.202406683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn<sup>2+</sup> transference (<i>t</i><sub>Zn</sub><sup>2+</sup>). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn<sup>2+</sup> transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis (trifluoromethylsulfonyl) imide (Zn(TFSI)<sub>2</sub>), with a structural formula identified as Zn(TFSI)<sub>2</sub>SN<sub>3</sub>. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02×10<sup>−4</sup> S cm<sup>−1</sup> at 25 °C and 3.26×10<sup>−5</sup> S cm<sup>−1</sup> at −35 °C) and a high <i>t</i><sub>Zn</sub><sup>2+</sup> (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm<sup>−2</sup>. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm<sup>−2</sup>), long-term cycling stability (83.6 % capacity retention after 70000 cycles (7 months)), wide temperature adaptability (−35 to 50 °C) and fast charging ability. The ZMC differs from SPEs in its structure for transporting Zn<sup>2+</sup> ions, significantly improving solid-state ZIBs while maintaining safety, durability, and sustainability.</p>\",\"PeriodicalId\":7803,\"journal\":{\"name\":\"Angewandte Chemie\",\"volume\":\"136 52\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Angewandte Chemie\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ange.202406683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Angewandte Chemie","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ange.202406683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

用于锌离子电池(zbs)的固体聚合物电解质(spe)由于聚合物段动力学缓慢而具有较低的离子电导率。因此,只支持阳离子的短距离移动,导致离子电导率低和Zn2+转移(tZn2+)。锌基超分子晶体(ZMCs)具有支持Zn2+长距离输运的巨大潜力;然而,它们在ZIBs中的效率尚未得到探索。本研究开发了一种由丁二腈(SN)和双(三氟甲基磺酰基)亚胺锌(Zn(TFSI)2)组成的ZMC,其分子式为Zn(TFSI)2SN3。ZMC在晶格中有有序的三维通道用于离子传导,提供高离子电导率(在25°C时6.02×10−4 S cm−1,在−35°C时3.26×10−5 S cm−1)和高tZn2+(0.97)。我们证明了具有ZMCs的Zn‖Zn对称电池具有长期循环稳定性(1200 h)和无枝晶镀锌/剥离过程,即使在3 mAh cm−2的高镀面密度下也是如此。制备的固态锌电池具有高放电容量(1.52 mAh cm−2)、长周期稳定性(7个月70000次循环后容量保持率83.6%)、宽温度适应性(- 35 ~ 50℃)和快速充电能力等优异性能。ZMC与spe的不同之处在于其传输Zn2+离子的结构,显著改善了固态zbs,同时保持了安全性、耐久性和可持续性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supramolecular Crystals based Fast Single Ion Conductor for Long-Cycling Solid Zinc Batteries

The solid polymer electrolytes (SPEs) used in Zn-ion batteries (ZIBs) have low ionic conductivity due to the sluggish dynamics of polymer segments. Thus, only short-range movement of cations is supported, leading to low ionic conductivity and Zn2+ transference (tZn2+). Zn-based supramolecular crystals (ZMCs) have considerable potential for supporting long-distance Zn2+ transport; however, their efficiency in ZIBs has not been explored. The present study developed a ZMC consisting of succinonitrile (SN) and zinc bis (trifluoromethylsulfonyl) imide (Zn(TFSI)2), with a structural formula identified as Zn(TFSI)2SN3. The ZMC has ordered three-dimensional tunnels in the crystalline lattices for ion conduction, providing high ionic conductivities (6.02×10−4 S cm−1 at 25 °C and 3.26×10−5 S cm−1 at −35 °C) and a high tZn2+ (0.97). We demonstrated that a Zn‖Zn symmetrical battery with ZMCs has long-term cycling stability (1200 h) and a dendrite-free Zn plating/stripping process, even at a high plating areal density of 3 mAh cm−2. The as-fabricated solid-state Zn battery exhibited excellent performance, including high discharge capacity (1.52 mAh cm−2), long-term cycling stability (83.6 % capacity retention after 70000 cycles (7 months)), wide temperature adaptability (−35 to 50 °C) and fast charging ability. The ZMC differs from SPEs in its structure for transporting Zn2+ ions, significantly improving solid-state ZIBs while maintaining safety, durability, and sustainability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Angewandte Chemie
Angewandte Chemie 化学科学, 有机化学, 有机合成
自引率
0.00%
发文量
0
审稿时长
1 months
期刊最新文献
Frontispiz: Ein ortsspezifischer Click-Chemie-Ansatz zur Diubiquitylierung von H1-Varianten zeigt eine positionsabhängige Stimulation des DNA-Reparaturproteins RNF168 Graphisches Inhaltsverzeichnis: Angew. Chem. 52/2024 Frontispiz: Experimental and Computational Evidence of a Stable RNA G-Triplex Structure at Physiological Temperature in the SARS-CoV-2 Genome Frontispiz: Cell-Permeable Nicotinamide Adenine Dinucleotides for Exploration of Cellular Protein ADP-Ribosylation Graphisches Inhaltsverzeichnis: Angew. Chem. 51/2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1