表面素覆盖银纳米粒子的协同探索:生物信息学见解,抗菌效力和抗癌活性。

IF 2.6 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY 3 Biotech Pub Date : 2025-01-01 Epub Date: 2024-12-16 DOI:10.1007/s13205-024-04174-5
Vivek Chauhan, Akash Pandey, Gaytri Mahajan, Vivek Dhiman, Shamsher S Kanwar
{"title":"表面素覆盖银纳米粒子的协同探索:生物信息学见解,抗菌效力和抗癌活性。","authors":"Vivek Chauhan, Akash Pandey, Gaytri Mahajan, Vivek Dhiman, Shamsher S Kanwar","doi":"10.1007/s13205-024-04174-5","DOIUrl":null,"url":null,"abstract":"<p><p>Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from <i>Bacillus subtilis</i> KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity. The Surfactin-capped AgNPs demonstrated enhanced stability, uniformity, and antimicrobial efficacy, confirmed through UV-VIS spectroscopy, FE-SEM, and X-ray diffraction analysis. The bioinformatics approach, including ADMET and PASS analysis, revealed the potential of Surfactin as a potent antimicrobial and anticancer agent. In addition, molecular docking studies further validated the interaction of Surfactin with key microbial cell-wall enzymes and proteins, underscoring its therapeutic potential. These findings suggest that Surfactin-stabilized AgNPs, combined with bioinformatic predictions, could pave the way for innovative antimicrobial and anticancer therapies.</p>","PeriodicalId":7067,"journal":{"name":"3 Biotech","volume":"15 1","pages":"13"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649612/pdf/","citationCount":"0","resultStr":"{\"title\":\"Synergistic exploration of Surfactin-capped silver nanoparticles: bioinformatics insights, antibacterial potency, and anticancer activity.\",\"authors\":\"Vivek Chauhan, Akash Pandey, Gaytri Mahajan, Vivek Dhiman, Shamsher S Kanwar\",\"doi\":\"10.1007/s13205-024-04174-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from <i>Bacillus subtilis</i> KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity. The Surfactin-capped AgNPs demonstrated enhanced stability, uniformity, and antimicrobial efficacy, confirmed through UV-VIS spectroscopy, FE-SEM, and X-ray diffraction analysis. The bioinformatics approach, including ADMET and PASS analysis, revealed the potential of Surfactin as a potent antimicrobial and anticancer agent. In addition, molecular docking studies further validated the interaction of Surfactin with key microbial cell-wall enzymes and proteins, underscoring its therapeutic potential. These findings suggest that Surfactin-stabilized AgNPs, combined with bioinformatic predictions, could pave the way for innovative antimicrobial and anticancer therapies.</p>\",\"PeriodicalId\":7067,\"journal\":{\"name\":\"3 Biotech\",\"volume\":\"15 1\",\"pages\":\"13\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11649612/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"3 Biotech\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13205-024-04174-5\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/12/16 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"3 Biotech","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13205-024-04174-5","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/16 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

表面素脂肽(LPs)是一类引人注目的生物表面活性剂,具有显著的抗菌和抗癌特性。本研究提出了一种新的方法,通过整合生物信息学工具来评估Surfactin的药物潜力,特别是关注其抗菌、抗真菌活性和癌细胞毒性。采用源自枯草芽孢杆菌KLP2016的生物表面活性剂Surfactin作为封盖剂合成银纳米颗粒(AgNPs),在存在和不存在Surfactin的情况下,评估其对纳米颗粒稳定性和生物活性的影响。通过UV-VIS光谱、FE-SEM和x射线衍射分析证实,表面素覆盖的AgNPs具有增强的稳定性、均匀性和抗菌功效。生物信息学方法,包括ADMET和PASS分析,揭示了Surfactin作为一种有效的抗菌和抗癌药物的潜力。此外,分子对接研究进一步验证了Surfactin与关键微生物细胞壁酶和蛋白质的相互作用,强调了其治疗潜力。这些发现表明,表面素稳定的AgNPs,结合生物信息学预测,可以为创新的抗菌和抗癌疗法铺平道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Synergistic exploration of Surfactin-capped silver nanoparticles: bioinformatics insights, antibacterial potency, and anticancer activity.

Surfactin lipopeptides (LPs) are a compelling class of biosurfactants with notable antimicrobial and anticancer properties. This study presents a novel approach by integrating bioinformatics tools to assess the drug potential of Surfactin, specifically focusing on its antibacterial, antifungal activities, and cancer cell-line toxicity. Silver nanoparticles (AgNPs) were synthesized using Surfactin, a biosurfactant derived from Bacillus subtilis KLP2016, as a capping agent, both in the presence and absence of Surfactin, to evaluate its impact on nanoparticle stability and bioactivity. The Surfactin-capped AgNPs demonstrated enhanced stability, uniformity, and antimicrobial efficacy, confirmed through UV-VIS spectroscopy, FE-SEM, and X-ray diffraction analysis. The bioinformatics approach, including ADMET and PASS analysis, revealed the potential of Surfactin as a potent antimicrobial and anticancer agent. In addition, molecular docking studies further validated the interaction of Surfactin with key microbial cell-wall enzymes and proteins, underscoring its therapeutic potential. These findings suggest that Surfactin-stabilized AgNPs, combined with bioinformatic predictions, could pave the way for innovative antimicrobial and anticancer therapies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
3 Biotech
3 Biotech Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
6.00
自引率
0.00%
发文量
314
期刊介绍: 3 Biotech publishes the results of the latest research related to the study and application of biotechnology to: - Medicine and Biomedical Sciences - Agriculture - The Environment The focus on these three technology sectors recognizes that complete Biotechnology applications often require a combination of techniques. 3 Biotech not only presents the latest developments in biotechnology but also addresses the problems and benefits of integrating a variety of techniques for a particular application. 3 Biotech will appeal to scientists and engineers in both academia and industry focused on the safe and efficient application of Biotechnology to Medicine, Agriculture and the Environment.
期刊最新文献
Biocontrol efficacy of native Metarhizium rileyi (Hypocreales: Clavicipitaceae) isolates against Spodoptera litura (F) (Lepidoptera: Noctuidae) and in silico effect of the secondary metabolites against the virulent proteins of the insect. Evaluation of a chloroquine hydrogel for topical treatment of leishmaniasis in BALB/c mice infected with Leishmania (L.) amazonensis. Exploring the therapeutic potential of oleanolic acid and its derivatives in cancer treatment: a comprehensive review. Potential of Streptomyces rochei 8ER183 for poly(lactic acid)-degrading enzyme production, biodegradative capability, and its whole-genome sequence characterization. Relevance of proteomics and metabolomics approaches to overview the tumorigenesis and better management of cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1