线粒体复合体I的24kda亚基调控大丽花黄萎病的生长、微核发育、胁迫耐受性和毒力。

IF 4.4 1区 生物学 Q1 BIOLOGY BMC Biology Pub Date : 2024-12-18 DOI:10.1186/s12915-024-02084-9
Huan Li, Ying Liu, Dan Wang, Ya-Hong Wang, Ruo-Cheng Sheng, Zhi-Qiang Kong, Steven J Klosterman, Jie-Yin Chen, Krishna V Subbarao, Feng-Mao Chen, Dan-Dan Zhang
{"title":"线粒体复合体I的24kda亚基调控大丽花黄萎病的生长、微核发育、胁迫耐受性和毒力。","authors":"Huan Li, Ying Liu, Dan Wang, Ya-Hong Wang, Ruo-Cheng Sheng, Zhi-Qiang Kong, Steven J Klosterman, Jie-Yin Chen, Krishna V Subbarao, Feng-Mao Chen, Dan-Dan Zhang","doi":"10.1186/s12915-024-02084-9","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism. However, the role of this complex in the pathogenesis of phytopathogenic fungi is largely unknown.</p><p><strong>Results: </strong>In this study, we identified the NADH: ubiquinone oxidoreductase 24-kDa subunit (VdNuo1) of complex in vascular wilt pathogen, Verticillium dahliae, and examined its functional conservation in phytopathogenic fungi. Based on the treatments with respiratory chain inhibitors, the mitochondria-localized VdNuo1 was confirmed to regulate mitochondrial morphogenesis and homeostasis. VdNuo1 was induced during the different developmental stages in V. dahliae, including hyphal growth, conidiation, and melanized microsclerotia development. The VdNuo1 mutants displayed variable sensitivity to stress factors and decreased pathogenicity in multiple hosts, indicating that VdNuo1 is necessary in stress tolerance and full virulence. Comparative transcriptome analysis demonstrated that VdNuo1 mediates global transcriptional effects, including oxidation and reduction processes, fatty acid, sugar, and energy metabolism. These defects are partly attributed to impairments of mitochondrial morphological integrity, complex assembly, and related functions. Its homologue (CgNuo1) functions in the vegetative growth, melanin biosynthesis, and pathogenicity of Colletotrichum gloeosporioides; however, CgNuo1 does not restore the VdNuo1 mutant to normal phenotypes.</p><p><strong>Conclusions: </strong>Our results revealed that VdNuo1 plays important roles in growth, metabolism, microsclerotia development, stress tolerance, and virulence of V. dahliae, sharing novel insight into the function of complex I and a potential fungicide target for pathogenic fungi.</p>","PeriodicalId":9339,"journal":{"name":"BMC Biology","volume":"22 1","pages":"289"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657094/pdf/","citationCount":"0","resultStr":"{\"title\":\"The 24-kDa subunit of mitochondrial complex I regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae.\",\"authors\":\"Huan Li, Ying Liu, Dan Wang, Ya-Hong Wang, Ruo-Cheng Sheng, Zhi-Qiang Kong, Steven J Klosterman, Jie-Yin Chen, Krishna V Subbarao, Feng-Mao Chen, Dan-Dan Zhang\",\"doi\":\"10.1186/s12915-024-02084-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism. However, the role of this complex in the pathogenesis of phytopathogenic fungi is largely unknown.</p><p><strong>Results: </strong>In this study, we identified the NADH: ubiquinone oxidoreductase 24-kDa subunit (VdNuo1) of complex in vascular wilt pathogen, Verticillium dahliae, and examined its functional conservation in phytopathogenic fungi. Based on the treatments with respiratory chain inhibitors, the mitochondria-localized VdNuo1 was confirmed to regulate mitochondrial morphogenesis and homeostasis. VdNuo1 was induced during the different developmental stages in V. dahliae, including hyphal growth, conidiation, and melanized microsclerotia development. The VdNuo1 mutants displayed variable sensitivity to stress factors and decreased pathogenicity in multiple hosts, indicating that VdNuo1 is necessary in stress tolerance and full virulence. Comparative transcriptome analysis demonstrated that VdNuo1 mediates global transcriptional effects, including oxidation and reduction processes, fatty acid, sugar, and energy metabolism. These defects are partly attributed to impairments of mitochondrial morphological integrity, complex assembly, and related functions. Its homologue (CgNuo1) functions in the vegetative growth, melanin biosynthesis, and pathogenicity of Colletotrichum gloeosporioides; however, CgNuo1 does not restore the VdNuo1 mutant to normal phenotypes.</p><p><strong>Conclusions: </strong>Our results revealed that VdNuo1 plays important roles in growth, metabolism, microsclerotia development, stress tolerance, and virulence of V. dahliae, sharing novel insight into the function of complex I and a potential fungicide target for pathogenic fungi.</p>\",\"PeriodicalId\":9339,\"journal\":{\"name\":\"BMC Biology\",\"volume\":\"22 1\",\"pages\":\"289\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657094/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BMC Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s12915-024-02084-9\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12915-024-02084-9","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:完整的线粒体呼吸链是维持细胞能量供应、发育和代谢平衡的先决条件。由于复合体的进化分化和线粒体的半自主性,呼吸链亚基已成为作物改良和真菌控制的重要靶标。在真菌中,线粒体复合体I介导生长和代谢。然而,这种复合物在植物致病性真菌发病机制中的作用在很大程度上是未知的。结果:本研究鉴定了血管性枯萎病病原菌黄萎病(Verticillium dahliae)复合体NADH:泛醌氧化还原酶24-kDa亚基(VdNuo1),并检测了其在植物病原真菌中的功能保护作用。通过呼吸链抑制剂的治疗,证实了线粒体定位的VdNuo1调节线粒体形态发生和稳态。VdNuo1在大丽花菌丝生长、分生和黑化微核发育的不同发育阶段被诱导。VdNuo1突变体对胁迫因子表现出不同的敏感性,在多个宿主中的致病性降低,表明VdNuo1是胁迫耐受性和完全毒力所必需的。比较转录组分析表明,VdNuo1介导全局转录效应,包括氧化和还原过程、脂肪酸、糖和能量代谢。这些缺陷部分归因于线粒体形态完整性、复杂组装和相关功能的损害。其同源物(CgNuo1)在炭疽菌的营养生长、黑色素生物合成和致病性中起作用;然而,CgNuo1并不能使VdNuo1突变体恢复正常表型。结论:研究结果表明,VdNuo1在大丽花弧菌的生长、代谢、微核发育、胁迫耐受性和毒力等方面发挥着重要作用,对复合体I的功能有了新的认识,并可能成为病原真菌的潜在杀菌剂靶点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The 24-kDa subunit of mitochondrial complex I regulates growth, microsclerotia development, stress tolerance, and virulence in Verticillium dahliae.

Background: The complete mitochondrial respiratory chain is a precondition for maintaining cellular energy supply, development, and metabolic balance. Due to the evolutionary differentiation of complexes and the semi-autonomy of mitochondria, respiratory chain subunits have become critical targets for crop improvement and fungal control. In fungi, mitochondrial complex I mediates growth and metabolism. However, the role of this complex in the pathogenesis of phytopathogenic fungi is largely unknown.

Results: In this study, we identified the NADH: ubiquinone oxidoreductase 24-kDa subunit (VdNuo1) of complex in vascular wilt pathogen, Verticillium dahliae, and examined its functional conservation in phytopathogenic fungi. Based on the treatments with respiratory chain inhibitors, the mitochondria-localized VdNuo1 was confirmed to regulate mitochondrial morphogenesis and homeostasis. VdNuo1 was induced during the different developmental stages in V. dahliae, including hyphal growth, conidiation, and melanized microsclerotia development. The VdNuo1 mutants displayed variable sensitivity to stress factors and decreased pathogenicity in multiple hosts, indicating that VdNuo1 is necessary in stress tolerance and full virulence. Comparative transcriptome analysis demonstrated that VdNuo1 mediates global transcriptional effects, including oxidation and reduction processes, fatty acid, sugar, and energy metabolism. These defects are partly attributed to impairments of mitochondrial morphological integrity, complex assembly, and related functions. Its homologue (CgNuo1) functions in the vegetative growth, melanin biosynthesis, and pathogenicity of Colletotrichum gloeosporioides; however, CgNuo1 does not restore the VdNuo1 mutant to normal phenotypes.

Conclusions: Our results revealed that VdNuo1 plays important roles in growth, metabolism, microsclerotia development, stress tolerance, and virulence of V. dahliae, sharing novel insight into the function of complex I and a potential fungicide target for pathogenic fungi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
BMC Biology
BMC Biology 生物-生物学
CiteScore
7.80
自引率
1.90%
发文量
260
审稿时长
3 months
期刊介绍: BMC Biology is a broad scope journal covering all areas of biology. Our content includes research articles, new methods and tools. BMC Biology also publishes reviews, Q&A, and commentaries.
期刊最新文献
Unravelling the hidden side of laundry: malodour, microbiome and pathogenome. Mapping chromatin remodelling in glioblastoma identifies epigenetic regulation of key molecular pathways and novel druggable targets. CDK1 mediates the metabolic regulation of DNA double-strand break repair in metaphase II oocytes. RNA helicase MOV10 suppresses fear memory and dendritic arborization and regulates microtubule dynamics in hippocampal neurons. Same data, different analysts: variation in effect sizes due to analytical decisions in ecology and evolutionary biology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1