PDSS2-Del2在HCC中的过表达通过与巨噬细胞相互作用促进肿瘤转移。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2024-12-18 DOI:10.1038/s41420-024-02274-y
Guanghui Li, Daqin Suo, Yuanzhen Ma, Tingting Zeng, Jiarong Zhan, Yunfei Yuan, Xin-Yuan Guan, Yan Li
{"title":"PDSS2-Del2在HCC中的过表达通过与巨噬细胞相互作用促进肿瘤转移。","authors":"Guanghui Li, Daqin Suo, Yuanzhen Ma, Tingting Zeng, Jiarong Zhan, Yunfei Yuan, Xin-Yuan Guan, Yan Li","doi":"10.1038/s41420-024-02274-y","DOIUrl":null,"url":null,"abstract":"<p><p>Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide. According to the Global Cancer Statistics 2020, liver cancer remains the third cause of cancer death globally. Despite significant advances in systemic therapy, HCC still has one of the worst prognoses due to its frequent recurrence and metastasis. Previously we found that PDSS2-Del2 (prenyl diphosphate synthase subunit 2 with exon 2 deletion), a novel variant of PDSS2, could promote HCC metastasis and angiogenesis via activating NF-κB. In this study, we elucidate a novel mechanism by which PDSS2-Del2 enhances HCC metastasis. The overexpression of PDSS2-Del2 in HCC cells promotes the ubiquitination and degradation of SKOR1, consequently heightening SMAD3 phosphorylation. Subsequently, the expression and secretion of MST1 (macrophage stimulatory protein 1) are upregulated, resulting in enhanced recruitment of macrophages into tumor tissues where they differentiate into M2-type macrophages. Co-culture with PDSS2-Del2 overexpressed HCC cells activated the PI3K/AKT signaling pathway in macrophages, and more MMP2 and MMP9 were secreted, which facilitated HCC cell dissemination. Our study elucidates a novel molecular mechanism by which PDSS2-Del2 promotes HCC metastasis, which may contribute to the development of effective HCC clinical treatment and prevent tumor metastasis. Furthermore, MST1 could be a potential therapeutic target, and MST1 inhibitors might be integrated into clinical practice for HCC patients with high expression of PDSS2-Del2.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"506"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655556/pdf/","citationCount":"0","resultStr":"{\"title\":\"Overexpression of PDSS2-Del2 in HCC promotes tumor metastasis by interacting with macrophages.\",\"authors\":\"Guanghui Li, Daqin Suo, Yuanzhen Ma, Tingting Zeng, Jiarong Zhan, Yunfei Yuan, Xin-Yuan Guan, Yan Li\",\"doi\":\"10.1038/s41420-024-02274-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide. According to the Global Cancer Statistics 2020, liver cancer remains the third cause of cancer death globally. Despite significant advances in systemic therapy, HCC still has one of the worst prognoses due to its frequent recurrence and metastasis. Previously we found that PDSS2-Del2 (prenyl diphosphate synthase subunit 2 with exon 2 deletion), a novel variant of PDSS2, could promote HCC metastasis and angiogenesis via activating NF-κB. In this study, we elucidate a novel mechanism by which PDSS2-Del2 enhances HCC metastasis. The overexpression of PDSS2-Del2 in HCC cells promotes the ubiquitination and degradation of SKOR1, consequently heightening SMAD3 phosphorylation. Subsequently, the expression and secretion of MST1 (macrophage stimulatory protein 1) are upregulated, resulting in enhanced recruitment of macrophages into tumor tissues where they differentiate into M2-type macrophages. Co-culture with PDSS2-Del2 overexpressed HCC cells activated the PI3K/AKT signaling pathway in macrophages, and more MMP2 and MMP9 were secreted, which facilitated HCC cell dissemination. Our study elucidates a novel molecular mechanism by which PDSS2-Del2 promotes HCC metastasis, which may contribute to the development of effective HCC clinical treatment and prevent tumor metastasis. Furthermore, MST1 could be a potential therapeutic target, and MST1 inhibitors might be integrated into clinical practice for HCC patients with high expression of PDSS2-Del2.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"506\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655556/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02274-y\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02274-y","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

肝细胞癌(HCC)是世界上最常见的实体肿瘤之一。根据《2020年全球癌症统计》,肝癌仍然是全球癌症死亡的第三大原因。尽管在全身治疗方面取得了重大进展,但HCC由于其频繁复发和转移,仍然是预后最差的疾病之一。先前我们发现PDSS2的新变体PDSS2- del2(带2外显子缺失的戊烯基二磷酸合成酶亚基2)可以通过激活NF-κB来促进HCC转移和血管生成。在这项研究中,我们阐明了PDSS2-Del2促进HCC转移的新机制。HCC细胞中PDSS2-Del2的过表达促进SKOR1的泛素化和降解,从而提高SMAD3的磷酸化水平。随后,巨噬细胞刺激蛋白1 (MST1)的表达和分泌上调,导致巨噬细胞向肿瘤组织募集增强,并分化为m2型巨噬细胞。与过表达PDSS2-Del2的HCC细胞共培养,激活巨噬细胞中PI3K/AKT信号通路,分泌更多的MMP2和MMP9,促进HCC细胞传播。我们的研究阐明了PDSS2-Del2促进HCC转移的一种新的分子机制,可能有助于开发有效的HCC临床治疗和预防肿瘤转移。此外,MST1可能是一个潜在的治疗靶点,对于PDSS2-Del2高表达的HCC患者,MST1抑制剂可能被整合到临床实践中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Overexpression of PDSS2-Del2 in HCC promotes tumor metastasis by interacting with macrophages.

Hepatocellular carcinoma (HCC) is one of the most frequent solid tumors worldwide. According to the Global Cancer Statistics 2020, liver cancer remains the third cause of cancer death globally. Despite significant advances in systemic therapy, HCC still has one of the worst prognoses due to its frequent recurrence and metastasis. Previously we found that PDSS2-Del2 (prenyl diphosphate synthase subunit 2 with exon 2 deletion), a novel variant of PDSS2, could promote HCC metastasis and angiogenesis via activating NF-κB. In this study, we elucidate a novel mechanism by which PDSS2-Del2 enhances HCC metastasis. The overexpression of PDSS2-Del2 in HCC cells promotes the ubiquitination and degradation of SKOR1, consequently heightening SMAD3 phosphorylation. Subsequently, the expression and secretion of MST1 (macrophage stimulatory protein 1) are upregulated, resulting in enhanced recruitment of macrophages into tumor tissues where they differentiate into M2-type macrophages. Co-culture with PDSS2-Del2 overexpressed HCC cells activated the PI3K/AKT signaling pathway in macrophages, and more MMP2 and MMP9 were secreted, which facilitated HCC cell dissemination. Our study elucidates a novel molecular mechanism by which PDSS2-Del2 promotes HCC metastasis, which may contribute to the development of effective HCC clinical treatment and prevent tumor metastasis. Furthermore, MST1 could be a potential therapeutic target, and MST1 inhibitors might be integrated into clinical practice for HCC patients with high expression of PDSS2-Del2.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Correction: CK2α-mediated phosphorylation of GRP94 facilitates the metastatic cascade in triple-negative breast cancer. Insights on the crosstalk among different cell death mechanisms. Tri-specific tribodies targeting 5T4, CD3, and immune checkpoint drive stronger functional T-cell responses than combinations of antibody therapeutics. Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Inhibition of lanosterol synthase linking with MAPK/JNK signaling pathway suppresses endometrial cancer.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1