TFAP2A通过促进esr2介导的MAPK通路驱动非小细胞肺癌(NSCLC)的进展和对靶向治疗的耐药性。

IF 6.1 2区 生物学 Q1 CELL BIOLOGY Cell Death Discovery Pub Date : 2024-12-18 DOI:10.1038/s41420-024-02251-5
Ding-Guo Wang, Jian Gao, Jing Wang, Kun-Chao Li, Zhi-Bo Wu, Zhong-Min Liao, Yong-Bing Wu
{"title":"TFAP2A通过促进esr2介导的MAPK通路驱动非小细胞肺癌(NSCLC)的进展和对靶向治疗的耐药性。","authors":"Ding-Guo Wang, Jian Gao, Jing Wang, Kun-Chao Li, Zhi-Bo Wu, Zhong-Min Liao, Yong-Bing Wu","doi":"10.1038/s41420-024-02251-5","DOIUrl":null,"url":null,"abstract":"<p><p>Cancer is among the leading causes of death related diseases worldwide, and lung cancer has the highest mortality rate in the world. Transcription factors (TFs) constitute a class of structurally and functionally intricate proteins. Aberrant expression or functional deficiencies of transcription factors may give rise to abnormal gene expression, contributing to various diseases, including tumours. In this study, we propose to elucidate the potential role and mechanism of TFAP2A in NSCLC. We found that TFAP2A levels were significantly greater in tumour tissues than para-tumour tissues, and high expression of TFAP2A was associated with poor prognosis in NSCLC patients. Additionally, TFAP2A overexpression promoted NSCLC progression both in vivo and in vitro. Mechanistically, ESR2 is a potential target regulated by TFAP2A and that TFAP2A can bind to the promoter region of ESR2. Furthermore, the overexpression of both TFAP2A and ESR2 in NSCLC cells was associated with the overactivation of MAPK signalling, and the combination of PHTPP and osimertinib had a synergistic effect on suppressing tumour growth.</p>","PeriodicalId":9735,"journal":{"name":"Cell Death Discovery","volume":"10 1","pages":"491"},"PeriodicalIF":6.1000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655566/pdf/","citationCount":"0","resultStr":"{\"title\":\"TFAP2A drives non-small cell lung cancer (NSCLC) progression and resistance to targeted therapy by facilitating the ESR2-mediated MAPK pathway.\",\"authors\":\"Ding-Guo Wang, Jian Gao, Jing Wang, Kun-Chao Li, Zhi-Bo Wu, Zhong-Min Liao, Yong-Bing Wu\",\"doi\":\"10.1038/s41420-024-02251-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Cancer is among the leading causes of death related diseases worldwide, and lung cancer has the highest mortality rate in the world. Transcription factors (TFs) constitute a class of structurally and functionally intricate proteins. Aberrant expression or functional deficiencies of transcription factors may give rise to abnormal gene expression, contributing to various diseases, including tumours. In this study, we propose to elucidate the potential role and mechanism of TFAP2A in NSCLC. We found that TFAP2A levels were significantly greater in tumour tissues than para-tumour tissues, and high expression of TFAP2A was associated with poor prognosis in NSCLC patients. Additionally, TFAP2A overexpression promoted NSCLC progression both in vivo and in vitro. Mechanistically, ESR2 is a potential target regulated by TFAP2A and that TFAP2A can bind to the promoter region of ESR2. Furthermore, the overexpression of both TFAP2A and ESR2 in NSCLC cells was associated with the overactivation of MAPK signalling, and the combination of PHTPP and osimertinib had a synergistic effect on suppressing tumour growth.</p>\",\"PeriodicalId\":9735,\"journal\":{\"name\":\"Cell Death Discovery\",\"volume\":\"10 1\",\"pages\":\"491\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11655566/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Death Discovery\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41420-024-02251-5\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Death Discovery","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41420-024-02251-5","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

癌症是世界范围内导致死亡的主要疾病之一,肺癌是世界上死亡率最高的疾病。转录因子是一类结构和功能复杂的蛋白质。转录因子的异常表达或功能缺陷可引起基因异常表达,导致包括肿瘤在内的各种疾病。在本研究中,我们拟阐明TFAP2A在NSCLC中的潜在作用及其机制。我们发现TFAP2A在肿瘤组织中的表达水平明显高于肿瘤旁组织,并且TFAP2A的高表达与NSCLC患者的不良预后相关。此外,TFAP2A过表达在体内和体外均促进NSCLC的进展。机制上,ESR2是TFAP2A调控的潜在靶点,TFAP2A可以结合到ESR2的启动子区域。此外,TFAP2A和ESR2在NSCLC细胞中的过表达与MAPK信号的过度激活有关,PHTPP和奥西替尼联合使用具有协同抑制肿瘤生长的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TFAP2A drives non-small cell lung cancer (NSCLC) progression and resistance to targeted therapy by facilitating the ESR2-mediated MAPK pathway.

Cancer is among the leading causes of death related diseases worldwide, and lung cancer has the highest mortality rate in the world. Transcription factors (TFs) constitute a class of structurally and functionally intricate proteins. Aberrant expression or functional deficiencies of transcription factors may give rise to abnormal gene expression, contributing to various diseases, including tumours. In this study, we propose to elucidate the potential role and mechanism of TFAP2A in NSCLC. We found that TFAP2A levels were significantly greater in tumour tissues than para-tumour tissues, and high expression of TFAP2A was associated with poor prognosis in NSCLC patients. Additionally, TFAP2A overexpression promoted NSCLC progression both in vivo and in vitro. Mechanistically, ESR2 is a potential target regulated by TFAP2A and that TFAP2A can bind to the promoter region of ESR2. Furthermore, the overexpression of both TFAP2A and ESR2 in NSCLC cells was associated with the overactivation of MAPK signalling, and the combination of PHTPP and osimertinib had a synergistic effect on suppressing tumour growth.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Death Discovery
Cell Death Discovery Biochemistry, Genetics and Molecular Biology-Cell Biology
CiteScore
8.30
自引率
1.40%
发文量
468
审稿时长
9 weeks
期刊介绍: Cell Death Discovery is a multidisciplinary, international, online-only, open access journal, dedicated to publishing research at the intersection of medicine with biochemistry, pharmacology, immunology, cell biology and cell death, provided it is scientifically sound. The unrestricted access to research findings in Cell Death Discovery will foster a dynamic and highly productive dialogue between basic scientists and clinicians, as well as researchers in industry with a focus on cancer, neurobiology and inflammation research. As an official journal of the Cell Death Differentiation Association (ADMC), Cell Death Discovery will build upon the success of Cell Death & Differentiation and Cell Death & Disease in publishing important peer-reviewed original research, timely reviews and editorial commentary. Cell Death Discovery is committed to increasing the reproducibility of research. To this end, in conjunction with its sister journals Cell Death & Differentiation and Cell Death & Disease, Cell Death Discovery provides a unique forum for scientists as well as clinicians and members of the pharmaceutical and biotechnical industry. It is committed to the rapid publication of high quality original papers that relate to these subjects, together with topical, usually solicited, reviews, editorial correspondence and occasional commentaries on controversial and scientifically informative issues.
期刊最新文献
Anaerobic metabolism promotes breast cancer survival via Histone-3 Lysine-18 lactylation mediating PPARD axis. Inhibition of lanosterol synthase linking with MAPK/JNK signaling pathway suppresses endometrial cancer. Targeting MDM2 affects spastin protein levels and functions: implications for HSP treatment. TAp63γ is the primary isoform of TP63 for tumor suppression but not development. The emerging roles of aberrant alternative splicing in glioma.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1