Shiyi Wu , Jialu Weng , Yating Pan , Zhikai Wen , Jing Zeng , Yunwei Lou , Songjian Tong , Pan Liao , Na Li , Zhijie Yu , Jinglin Xia
{"title":"双硫仑/铜靶向FOXO6通过破坏胆碱代谢调节肝癌对lenvatinib的敏感性。","authors":"Shiyi Wu , Jialu Weng , Yating Pan , Zhikai Wen , Jing Zeng , Yunwei Lou , Songjian Tong , Pan Liao , Na Li , Zhijie Yu , Jinglin Xia","doi":"10.1016/j.cellsig.2024.111563","DOIUrl":null,"url":null,"abstract":"<div><div>Disulfiram/Cu(DSF/Cu) has a known pharmacokinetic and safety profile, exerting a strong antitumor effect. Oral tyrosine kinase inhibitors including lenvatinib are approved as first-line therapy for treating advanced unresectable hepatocellular carcinoma (HCC). These patients still have limited survival due to drug resistance. Disulfiram/Cu and lenvatinib are the promising antitumor treatments. In this study, we studied whether Disulfiram/Cu increased lenvatinib sensitivity in HCC cells. Moreover, the potential drug targets of Disulfiram/Cu and associated mechanisms were explored. We mainly investigated Autophagic flux was determined via immunofluorescence analysis and confocal microscopy. p-PI3K, p-AKT, p62, LC3B, FOXO6, and CHKA proteins associated with autophagy were detected by immunoblotting. In addition, antitumour activity of Disulfiram/Cu in combination with lenvatinib was examined in vivo through construction of the nude mouse transplant tumor model. Furthermore, our results show disulfiram/Cu combined with lenvatinib exerted the synergistic impact on treating HCC in vitro. Mechanistically, transcriptome combined with metabolome reveals Disulfiram/Cu targeting FOXO6 induction of autophagy mediated inhibits cell growth in hepatocellular carcinoma by downregulating CHKα for inhibiting AKT pathway activation while blocking choline metabolic reprogramming in HCC. These effects mostly explain the tumor-promoting effect of FOXO6 on HCC. In general, the results illustrate the mechanistic associations between metabolites and tumor cell malignant phenotype, contributing to developing new anti-HCC pharmacological treatments by Inhibiting FOXO6 for disrupting choline metabolic pathway.</div></div>","PeriodicalId":9902,"journal":{"name":"Cellular signalling","volume":"127 ","pages":"Article 111563"},"PeriodicalIF":4.4000,"publicationDate":"2024-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disulfiram/Cu targeting FOXO6 modulates sensitivity of hepatocellular carcinoma to lenvatinib via disrupt choline metabolic\",\"authors\":\"Shiyi Wu , Jialu Weng , Yating Pan , Zhikai Wen , Jing Zeng , Yunwei Lou , Songjian Tong , Pan Liao , Na Li , Zhijie Yu , Jinglin Xia\",\"doi\":\"10.1016/j.cellsig.2024.111563\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Disulfiram/Cu(DSF/Cu) has a known pharmacokinetic and safety profile, exerting a strong antitumor effect. Oral tyrosine kinase inhibitors including lenvatinib are approved as first-line therapy for treating advanced unresectable hepatocellular carcinoma (HCC). These patients still have limited survival due to drug resistance. Disulfiram/Cu and lenvatinib are the promising antitumor treatments. In this study, we studied whether Disulfiram/Cu increased lenvatinib sensitivity in HCC cells. Moreover, the potential drug targets of Disulfiram/Cu and associated mechanisms were explored. We mainly investigated Autophagic flux was determined via immunofluorescence analysis and confocal microscopy. p-PI3K, p-AKT, p62, LC3B, FOXO6, and CHKA proteins associated with autophagy were detected by immunoblotting. In addition, antitumour activity of Disulfiram/Cu in combination with lenvatinib was examined in vivo through construction of the nude mouse transplant tumor model. Furthermore, our results show disulfiram/Cu combined with lenvatinib exerted the synergistic impact on treating HCC in vitro. Mechanistically, transcriptome combined with metabolome reveals Disulfiram/Cu targeting FOXO6 induction of autophagy mediated inhibits cell growth in hepatocellular carcinoma by downregulating CHKα for inhibiting AKT pathway activation while blocking choline metabolic reprogramming in HCC. These effects mostly explain the tumor-promoting effect of FOXO6 on HCC. In general, the results illustrate the mechanistic associations between metabolites and tumor cell malignant phenotype, contributing to developing new anti-HCC pharmacological treatments by Inhibiting FOXO6 for disrupting choline metabolic pathway.</div></div>\",\"PeriodicalId\":9902,\"journal\":{\"name\":\"Cellular signalling\",\"volume\":\"127 \",\"pages\":\"Article 111563\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cellular signalling\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0898656824005382\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cellular signalling","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0898656824005382","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
Disulfiram/Cu targeting FOXO6 modulates sensitivity of hepatocellular carcinoma to lenvatinib via disrupt choline metabolic
Disulfiram/Cu(DSF/Cu) has a known pharmacokinetic and safety profile, exerting a strong antitumor effect. Oral tyrosine kinase inhibitors including lenvatinib are approved as first-line therapy for treating advanced unresectable hepatocellular carcinoma (HCC). These patients still have limited survival due to drug resistance. Disulfiram/Cu and lenvatinib are the promising antitumor treatments. In this study, we studied whether Disulfiram/Cu increased lenvatinib sensitivity in HCC cells. Moreover, the potential drug targets of Disulfiram/Cu and associated mechanisms were explored. We mainly investigated Autophagic flux was determined via immunofluorescence analysis and confocal microscopy. p-PI3K, p-AKT, p62, LC3B, FOXO6, and CHKA proteins associated with autophagy were detected by immunoblotting. In addition, antitumour activity of Disulfiram/Cu in combination with lenvatinib was examined in vivo through construction of the nude mouse transplant tumor model. Furthermore, our results show disulfiram/Cu combined with lenvatinib exerted the synergistic impact on treating HCC in vitro. Mechanistically, transcriptome combined with metabolome reveals Disulfiram/Cu targeting FOXO6 induction of autophagy mediated inhibits cell growth in hepatocellular carcinoma by downregulating CHKα for inhibiting AKT pathway activation while blocking choline metabolic reprogramming in HCC. These effects mostly explain the tumor-promoting effect of FOXO6 on HCC. In general, the results illustrate the mechanistic associations between metabolites and tumor cell malignant phenotype, contributing to developing new anti-HCC pharmacological treatments by Inhibiting FOXO6 for disrupting choline metabolic pathway.
期刊介绍:
Cellular Signalling publishes original research describing fundamental and clinical findings on the mechanisms, actions and structural components of cellular signalling systems in vitro and in vivo.
Cellular Signalling aims at full length research papers defining signalling systems ranging from microorganisms to cells, tissues and higher organisms.