小结构和平均速度场对脑脊液流动影响的数值研究。

IF 5.9 1区 医学 Q1 NEUROSCIENCES Fluids and Barriers of the CNS Pub Date : 2024-12-18 DOI:10.1186/s12987-024-00604-x
Ziyu Wang, Mohammad Majidi, Chenji Li, Arezoo Ardekani
{"title":"小结构和平均速度场对脑脊液流动影响的数值研究。","authors":"Ziyu Wang, Mohammad Majidi, Chenji Li, Arezoo Ardekani","doi":"10.1186/s12987-024-00604-x","DOIUrl":null,"url":null,"abstract":"<p><p>The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.</p>","PeriodicalId":12321,"journal":{"name":"Fluids and Barriers of the CNS","volume":"21 1","pages":"102"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657969/pdf/","citationCount":"0","resultStr":"{\"title\":\"Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.\",\"authors\":\"Ziyu Wang, Mohammad Majidi, Chenji Li, Arezoo Ardekani\",\"doi\":\"10.1186/s12987-024-00604-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.</p>\",\"PeriodicalId\":12321,\"journal\":{\"name\":\"Fluids and Barriers of the CNS\",\"volume\":\"21 1\",\"pages\":\"102\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11657969/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fluids and Barriers of the CNS\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12987-024-00604-x\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fluids and Barriers of the CNS","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12987-024-00604-x","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

优化鞘内给药的重要性强调了其改善患者健康结果的潜力。先前基于个体或小群体的计算研究的结果可能不适用于更广泛的人群,因为存在大量的几何变异性。我们的研究旨在通过评估个体的周期平均拉格朗日速度场来规避这个问题,该速度场是基于他们的脊髓蛛网膜下腔空间的几何形状。Lawrence等人(J Fluid Mech 861:679-720, 2019)表明,稳定流和Stokes漂移等主要物理机制是促进椎管内物质运输的关键。在本研究中,我们计算模拟了脊髓蛛网膜下腔内脉动脑脊液流场和拉格朗日速度场。我们的研究结果强调了次要结构,如神经根、齿状韧带和波浪形蛛网膜,在调节脊髓蛛网膜下腔内的流动和运输动力学中的重要作用。我们发现这些结构可以增强流体的输送。我们还强调了在脊髓蛛网膜下腔内质量传输的计算研究中粒子跟踪的必要性。我们的研究阐明了椎管的几何形状和传输动力学之间的关系,其特点是在较宽的几何形状区域有一个较大的向上周期平均拉格朗日速度区,而在较窄的区域和靠近壁的区域则有一个向下的区域。这突出了通过利用椎管内的自然流动动力学来优化鞘内注射方案的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical study of the effects of minor structures and mean velocity fields in the cerebrospinal fluid flow.

The importance of optimizing intrathecal drug delivery is highlighted by its potential to improve patient health outcomes. Findings from previous computational studies, based on an individual or a small group, may not be applicable to the wider population due to substantial geometric variability. Our study aims to circumvent this problem by evaluating an individual's cycle-averaged Lagrangian velocity field based on the geometry of their spinal subarachnoid space. It has been shown by Lawrence et al. (J Fluid Mech 861:679-720, 2019) that dominant physical mechanisms, such as steady streaming and Stokes drift, are key to facilitating mass transport within the spinal canal. In this study, we computationally modeled pulsatile cerebrospinal fluid flow fields and Lagrangian velocity field within the spinal subarachnoid space. Our findings highlight the essential role of minor structures, such as nerve roots, denticulate ligaments, and the wavy arachnoid membrane, in modulating flow and transport dynamics within the spinal subarachnoid space. We found that these structures can enhance fluid transport. We also emphasized the need for particle tracking in computational studies of mass transport within the spinal subarachnoid space. Our research illuminates the relationship between the geometry of the spinal canal and transport dynamics, characterized by a large upward cycle-averaged Lagrangian velocity zone in the wider region of the geometry, as opposed to a downward zone in the narrower region and areas close to the wall. This highlights the potential for optimizing intrathecal injection protocols by harnessing natural flow dynamics within the spinal canal.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fluids and Barriers of the CNS
Fluids and Barriers of the CNS Neuroscience-Developmental Neuroscience
CiteScore
10.70
自引率
8.20%
发文量
94
审稿时长
14 weeks
期刊介绍: "Fluids and Barriers of the CNS" is a scholarly open access journal that specializes in the intricate world of the central nervous system's fluids and barriers, which are pivotal for the health and well-being of the human body. This journal is a peer-reviewed platform that welcomes research manuscripts exploring the full spectrum of CNS fluids and barriers, with a particular focus on their roles in both health and disease. At the heart of this journal's interest is the cerebrospinal fluid (CSF), a vital fluid that circulates within the brain and spinal cord, playing a multifaceted role in the normal functioning of the brain and in various neurological conditions. The journal delves into the composition, circulation, and absorption of CSF, as well as its relationship with the parenchymal interstitial fluid and the neurovascular unit at the blood-brain barrier (BBB).
期刊最新文献
Age-related cerebral ventriculomegaly occurs in patients with primary ciliary dyskinesia. Endothelial and neuronal engagement by AAV-BR1 gene therapy alleviates neurological symptoms and lipid deposition in a mouse model of Niemann-Pick type C2. Increasing brain half-life of antibodies by additional binding to myelin oligodendrocyte glycoprotein, a CNS specific protein. A novel method for detecting intracranial pressure changes by monitoring cerebral perfusion via electrical impedance tomography. Exploring the ability of plasma pTau217, pTau181 and beta-amyloid in mirroring cerebrospinal fluid biomarker profile of Mild Cognitive Impairment by the fully automated Lumipulse® platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1