大鼠外伤性脑损伤后航空医疗后送相关的低压导致脑血流抑制、神经化学改变和神经炎症增加。

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM Journal of Cerebral Blood Flow and Metabolism Pub Date : 2024-12-18 DOI:10.1177/0271678X241299985
Julie L Proctor, Su Xu, Sijia Guo, Boris Piskoun, Catriona Miller, Steven Roys, Rao P Gullapalli, Gary Fiskum
{"title":"大鼠外伤性脑损伤后航空医疗后送相关的低压导致脑血流抑制、神经化学改变和神经炎症增加。","authors":"Julie L Proctor, Su Xu, Sijia Guo, Boris Piskoun, Catriona Miller, Steven Roys, Rao P Gullapalli, Gary Fiskum","doi":"10.1177/0271678X241299985","DOIUrl":null,"url":null,"abstract":"<p><p>Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry. Rats were exposed to simulated ground (normobaric) or air (hypobaric 8000 ft) transport, under normoxia or hyperoxia, 24 hr after trauma. Hypobaria exposure resulted in lower cerebral blood flow to the contralateral cortex and bilateral thalamus during flight and increased delayed cortical inflammation (ED1 immunoreactivity) at 14 days post injury. Impacted rats exposed to hypobaria had higher cortical creatine levels compared rats maintained at sea level. Exposure to the combination of hyperoxia and hypobaria resulted in the greatest reduction in cortical blood flow and total creatine during flight which persisted up to two weeks. In conclusion, hypoperfusion during hypobaria exposure could contribute to worsening of neuroinflammation and neurochemical imbalances. The presence of excessive O<sub>2</sub> during hypobaria results in long-term suppression of cerebral blood flow, indicating that supplemental O<sub>2</sub> should be titrated during hypobaria to maintain normoxia.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"271678X241299985"},"PeriodicalIF":4.9000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656461/pdf/","citationCount":"0","resultStr":"{\"title\":\"Aeromedical evacuation-relevant hypobaria following traumatic brain injury in rats contributes to cerebral blood flow depression, altered neurochemistry, and increased neuroinflammation.\",\"authors\":\"Julie L Proctor, Su Xu, Sijia Guo, Boris Piskoun, Catriona Miller, Steven Roys, Rao P Gullapalli, Gary Fiskum\",\"doi\":\"10.1177/0271678X241299985\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry. Rats were exposed to simulated ground (normobaric) or air (hypobaric 8000 ft) transport, under normoxia or hyperoxia, 24 hr after trauma. Hypobaria exposure resulted in lower cerebral blood flow to the contralateral cortex and bilateral thalamus during flight and increased delayed cortical inflammation (ED1 immunoreactivity) at 14 days post injury. Impacted rats exposed to hypobaria had higher cortical creatine levels compared rats maintained at sea level. Exposure to the combination of hyperoxia and hypobaria resulted in the greatest reduction in cortical blood flow and total creatine during flight which persisted up to two weeks. In conclusion, hypoperfusion during hypobaria exposure could contribute to worsening of neuroinflammation and neurochemical imbalances. The presence of excessive O<sub>2</sub> during hypobaria results in long-term suppression of cerebral blood flow, indicating that supplemental O<sub>2</sub> should be titrated during hypobaria to maintain normoxia.</p>\",\"PeriodicalId\":15325,\"journal\":{\"name\":\"Journal of Cerebral Blood Flow and Metabolism\",\"volume\":\" \",\"pages\":\"271678X241299985\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11656461/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Cerebral Blood Flow and Metabolism\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/0271678X241299985\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENDOCRINOLOGY & METABOLISM\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X241299985","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

摘要

飞机客舱通常被加压到相当于8000英尺的高度。实验动物在创伤性脑损伤后暴露于与航空医疗后送相关的低压环境会使神经系统预后恶化,而高氧又会矛盾地加剧这种情况。本研究验证了这样一种假设,即大鼠在皮质撞击后暴露于低压环境会减少脑血流量,增加神经炎症,并改变脑神经化学。创伤后24小时,将大鼠暴露于模拟地面(常压)或空气(低压8000英尺)中,在常氧或高氧条件下运输。下压暴露导致飞行期间对侧皮质和双侧丘脑的脑血流量减少,损伤后14天延迟皮质炎症(ED1免疫反应性)增加。与保持在海平面下的大鼠相比,暴露于低气压下的大鼠皮质肌酸水平较高。暴露于高氧和低压的组合导致飞行期间皮质血流量和总肌酸的最大减少,持续长达两周。总之,低压暴露时的低灌注可导致神经炎症恶化和神经化学失衡。低压时过量的O2会导致脑血流量的长期抑制,这表明在低压期间应滴定补充O2以维持正常氧合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aeromedical evacuation-relevant hypobaria following traumatic brain injury in rats contributes to cerebral blood flow depression, altered neurochemistry, and increased neuroinflammation.

Aircraft cabins are routinely pressurized to the equivalent of 8000 ft altitude. Exposure of lab animals to aeromedical evacuation relevant hypobaria after traumatic brain injury worsens neurological outcomes, which is paradoxically exacerbated by hyperoxia. This study tested the hypothesis that exposure of rats to hypobaria following cortical impact reduces cerebral blood flow, increases neuroinflammation, and alters brain neurochemistry. Rats were exposed to simulated ground (normobaric) or air (hypobaric 8000 ft) transport, under normoxia or hyperoxia, 24 hr after trauma. Hypobaria exposure resulted in lower cerebral blood flow to the contralateral cortex and bilateral thalamus during flight and increased delayed cortical inflammation (ED1 immunoreactivity) at 14 days post injury. Impacted rats exposed to hypobaria had higher cortical creatine levels compared rats maintained at sea level. Exposure to the combination of hyperoxia and hypobaria resulted in the greatest reduction in cortical blood flow and total creatine during flight which persisted up to two weeks. In conclusion, hypoperfusion during hypobaria exposure could contribute to worsening of neuroinflammation and neurochemical imbalances. The presence of excessive O2 during hypobaria results in long-term suppression of cerebral blood flow, indicating that supplemental O2 should be titrated during hypobaria to maintain normoxia.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
期刊最新文献
Genetic determinants of insufficiency of the collateral circulation. Advances in clinical translation of stem cell-based therapy in neurological diseases. Respiratory influence on cerebral blood flow and blood volume - A 4D flow MRI study. A-kinase anchor protein 12 promotes oligodendrogenesis and cognitive recovery in carbon monoxide therapy for traumatic brain injury. Evidence for cellular and solute passage between the brain and skull bone marrow across meninges: A systematic review.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1