以葡萄糖为唯一碳源的多重工程枯草芽孢杆菌重新合成2'-聚焦乳糖。

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-12-17 DOI:10.1016/j.ymben.2024.12.004
Quanwei Zhang, Xianhao Xu, Wei Zhang, Ziyang Huang, Yaokang Wu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu
{"title":"以葡萄糖为唯一碳源的多重工程枯草芽孢杆菌重新合成2'-聚焦乳糖。","authors":"Quanwei Zhang, Xianhao Xu, Wei Zhang, Ziyang Huang, Yaokang Wu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu","doi":"10.1016/j.ymben.2024.12.004","DOIUrl":null,"url":null,"abstract":"<p><p>2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and plays significant roles in gut microbiome balance, neural development, and immunoregulation. However, current fermentation schemes using multiple carbon sources increase production cost and metabolism burden. This study reported the development of an engineered Bacillus subtilis strain that produces 2'-FL using glucose as the sole carbon source. First, a lactose biosynthesis module was constructed by expressing β-1,4-galactosyltransferase gene from Neisseria meningitidis. A 2'-FL titer of 2.53 ± 0.07 g/L was subsequently achieved using glucose as the sole carbon source by the combination of lactose and GDP-L-fucose (GDP-Fuc) biosynthesis modules. Introducing an exogenous nonphosphorylated transport system enhanced the supply of intracellular nonphosphorylated glucose, and the 2'-FL titer increased to 4.94 ± 0.35 g/L. Next, a transcription factor screening platform was designed. Based on this platform, the ligand of the transcription factor LacI was changed from isopropyl β-D-thiogalactoside to lactose. A lactose-responsive genetic circuit was then constructed and used for the dynamic regulation of metabolic fluxes between lactose and GDP-Fuc biosynthesis modules. Ultimately, the 2'-FL titer of the dynamically regulated strain improved by 107% to 9.67 ± 0.65 g/L in shake-flask, and the titer and yield in a 3-L bioreactor reached 30.1 g/L and 0.15 g/g using glucose as the sole carbon source. By using multidimensional engineering strategies, this study constructed a B. subtilis strain capable of efficiently producing 2'-FL with glucose as the sole carbon source, paving the way for the industrial production of 2'-FL with low cost in the future.</p>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":" ","pages":"85-93"},"PeriodicalIF":6.8000,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"De novo 2'-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis.\",\"authors\":\"Quanwei Zhang, Xianhao Xu, Wei Zhang, Ziyang Huang, Yaokang Wu, Yanfeng Liu, Jianghua Li, Guocheng Du, Xueqin Lv, Long Liu\",\"doi\":\"10.1016/j.ymben.2024.12.004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and plays significant roles in gut microbiome balance, neural development, and immunoregulation. However, current fermentation schemes using multiple carbon sources increase production cost and metabolism burden. This study reported the development of an engineered Bacillus subtilis strain that produces 2'-FL using glucose as the sole carbon source. First, a lactose biosynthesis module was constructed by expressing β-1,4-galactosyltransferase gene from Neisseria meningitidis. A 2'-FL titer of 2.53 ± 0.07 g/L was subsequently achieved using glucose as the sole carbon source by the combination of lactose and GDP-L-fucose (GDP-Fuc) biosynthesis modules. Introducing an exogenous nonphosphorylated transport system enhanced the supply of intracellular nonphosphorylated glucose, and the 2'-FL titer increased to 4.94 ± 0.35 g/L. Next, a transcription factor screening platform was designed. Based on this platform, the ligand of the transcription factor LacI was changed from isopropyl β-D-thiogalactoside to lactose. A lactose-responsive genetic circuit was then constructed and used for the dynamic regulation of metabolic fluxes between lactose and GDP-Fuc biosynthesis modules. Ultimately, the 2'-FL titer of the dynamically regulated strain improved by 107% to 9.67 ± 0.65 g/L in shake-flask, and the titer and yield in a 3-L bioreactor reached 30.1 g/L and 0.15 g/g using glucose as the sole carbon source. By using multidimensional engineering strategies, this study constructed a B. subtilis strain capable of efficiently producing 2'-FL with glucose as the sole carbon source, paving the way for the industrial production of 2'-FL with low cost in the future.</p>\",\"PeriodicalId\":18483,\"journal\":{\"name\":\"Metabolic engineering\",\"volume\":\" \",\"pages\":\"85-93\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metabolic engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.ymben.2024.12.004\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.ymben.2024.12.004","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

2′-焦酰基乳糖(2′- fl)是最丰富的人乳低聚糖,在肠道微生物群平衡、神经发育和免疫调节中起重要作用。然而,目前的多碳源发酵方案增加了生产成本和代谢负担。本研究报道了一种工程枯草芽孢杆菌菌株的发展,该菌株以葡萄糖为唯一碳源产生2'-FL。首先,通过表达脑膜炎奈瑟菌β-1,4-半乳糖转移酶基因构建乳糖生物合成模块。随后,通过乳糖和GDP-L- focus (GDP-Fuc)生物合成模块的结合,以葡萄糖为唯一碳源,获得了2.53±0.07 g/L的2'- fl滴度。引入外源性非磷酸化转运系统增强了细胞内非磷酸化葡萄糖的供应,2′-FL滴度提高到4.94±0.35 g/L。其次,设计转录因子筛选平台。基于该平台,将转录因子LacI的配体由异丙基β- d -硫代半乳糖苷转变为乳糖。然后构建了一个乳糖响应遗传回路,并用于动态调节乳糖和GDP-Fuc生物合成模块之间的代谢通量。最终,动态调节菌株在摇瓶中的2′-FL滴度提高了107%,达到9.67±0.65 g/L,在3-L生物反应器中以葡萄糖为唯一碳源的滴度和产率分别达到30.1 g/L和0.15 g/g。本研究通过多维工程策略,构建了以葡萄糖为唯一碳源高效生产2’-FL的枯草芽孢杆菌菌株,为未来低成本工业化生产2’-FL铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
De novo 2'-fucosyllactose biosynthesis using glucose as the sole carbon source by multiple engineered Bacillus subtilis.

2'-Fucosyllactose (2'-FL) is the most abundant human milk oligosaccharide and plays significant roles in gut microbiome balance, neural development, and immunoregulation. However, current fermentation schemes using multiple carbon sources increase production cost and metabolism burden. This study reported the development of an engineered Bacillus subtilis strain that produces 2'-FL using glucose as the sole carbon source. First, a lactose biosynthesis module was constructed by expressing β-1,4-galactosyltransferase gene from Neisseria meningitidis. A 2'-FL titer of 2.53 ± 0.07 g/L was subsequently achieved using glucose as the sole carbon source by the combination of lactose and GDP-L-fucose (GDP-Fuc) biosynthesis modules. Introducing an exogenous nonphosphorylated transport system enhanced the supply of intracellular nonphosphorylated glucose, and the 2'-FL titer increased to 4.94 ± 0.35 g/L. Next, a transcription factor screening platform was designed. Based on this platform, the ligand of the transcription factor LacI was changed from isopropyl β-D-thiogalactoside to lactose. A lactose-responsive genetic circuit was then constructed and used for the dynamic regulation of metabolic fluxes between lactose and GDP-Fuc biosynthesis modules. Ultimately, the 2'-FL titer of the dynamically regulated strain improved by 107% to 9.67 ± 0.65 g/L in shake-flask, and the titer and yield in a 3-L bioreactor reached 30.1 g/L and 0.15 g/g using glucose as the sole carbon source. By using multidimensional engineering strategies, this study constructed a B. subtilis strain capable of efficiently producing 2'-FL with glucose as the sole carbon source, paving the way for the industrial production of 2'-FL with low cost in the future.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Prenol production in a microbial host via the "Repass" Pathways. Exploring and increased acetate biosynthesis in Synechocystis PCC 6803 through insertion of a heterologous phosphoketolase and overexpressing phosphotransacetylase. Introduction of acetyl-phosphate bypass and increased culture temperatures enhanced growth-coupled poly-hydroxybutyrate production in the marine cyanobacterium Synechococcus sp. PCC7002. Biosynthesis of 10-Hydroxy-2-Decenoic Acid in Escherichia coli. Unleashing the innate ability of Escherichia coli to produce D-Allose.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1