遥感揭示了牧草质量和数量对马鹿夏季生境利用的影响。

IF 3.4 1区 生物学 Q2 ECOLOGY Movement Ecology Pub Date : 2024-12-18 DOI:10.1186/s40462-024-00521-6
Thomas Rempfler, Christian Rossi, Jan Schweizer, Wibke Peters, Claudio Signer, Flurin Filli, Hannes Jenny, Klaus Hackländer, Sven Buchmann, Pia Anderwald
{"title":"遥感揭示了牧草质量和数量对马鹿夏季生境利用的影响。","authors":"Thomas Rempfler, Christian Rossi, Jan Schweizer, Wibke Peters, Claudio Signer, Flurin Filli, Hannes Jenny, Klaus Hackländer, Sven Buchmann, Pia Anderwald","doi":"10.1186/s40462-024-00521-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The habitat use of wild ungulates is determined by forage availability, but also the avoidance of predation and human disturbance. They should apply foraging strategies that provide the most energy at the lowest cost. However, due to data limitations at the scale of movement trajectories, it is not clear to what extent even well-studied species such as red deer (Cervus elaphus) trade-off between forage quality and quantity, especially in heterogeneous alpine habitats characterized by short vegetation periods.</p><p><strong>Methods: </strong>We used remote sensing data to derive spatially continuous forage quality and quantity information. To predict relative nitrogen (i.e. forage quality) and biomass (i.e. forage quantity), we related field data to predictor variables derived from Sentinel-2 satellite data. In particular, our approach employed random forest regression algorithms, integrating various remote sensing variables such as reflectance values, vegetation indices and optical traits derived from a radiative transfer model. We combined these forage characteristics with variables representing human activity, and applied integrated step selection functions to estimate sex-specific summer habitat selection of red deer in open habitats within and around the Swiss National Park, an alpine Strict Nature Reserve.</p><p><strong>Results: </strong>The combination of vegetation indices and optical traits greatly improved predictive power in both the biomass (R<sup>2</sup> = 0.60, Root mean square error (RMSE) = 88.55 g/m<sup>2</sup>) and relative nitrogen models (R<sup>2</sup> = 0.34, RMSE = 0.28%). Both female and male red deer selected more strongly for biomass (estimate = 0.672 ± 0.059 SE for normalised values for females, and 0.507 ± 0.061 for males) than relative nitrogen (estimate = 0.124 ± 0.062 for females, and 0.161 ± 0.061 for males, respectively). Females showed higher levels of use of the Swiss National Park.</p><p><strong>Conclusions: </strong>Red deer in summer habitats select forage quantity over quality with little difference between sexes. Females respond more strongly to human activities and thus prefer the Swiss National Park. Our results demonstrate the capability of satellite data to estimate forage quality and quantity separately for movement ecology studies, going beyond the exclusive use of conventional vegetation indices.</p>","PeriodicalId":54288,"journal":{"name":"Movement Ecology","volume":"12 1","pages":"80"},"PeriodicalIF":3.4000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654361/pdf/","citationCount":"0","resultStr":"{\"title\":\"Remote sensing reveals the role of forage quality and quantity for summer habitat use in red deer.\",\"authors\":\"Thomas Rempfler, Christian Rossi, Jan Schweizer, Wibke Peters, Claudio Signer, Flurin Filli, Hannes Jenny, Klaus Hackländer, Sven Buchmann, Pia Anderwald\",\"doi\":\"10.1186/s40462-024-00521-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The habitat use of wild ungulates is determined by forage availability, but also the avoidance of predation and human disturbance. They should apply foraging strategies that provide the most energy at the lowest cost. However, due to data limitations at the scale of movement trajectories, it is not clear to what extent even well-studied species such as red deer (Cervus elaphus) trade-off between forage quality and quantity, especially in heterogeneous alpine habitats characterized by short vegetation periods.</p><p><strong>Methods: </strong>We used remote sensing data to derive spatially continuous forage quality and quantity information. To predict relative nitrogen (i.e. forage quality) and biomass (i.e. forage quantity), we related field data to predictor variables derived from Sentinel-2 satellite data. In particular, our approach employed random forest regression algorithms, integrating various remote sensing variables such as reflectance values, vegetation indices and optical traits derived from a radiative transfer model. We combined these forage characteristics with variables representing human activity, and applied integrated step selection functions to estimate sex-specific summer habitat selection of red deer in open habitats within and around the Swiss National Park, an alpine Strict Nature Reserve.</p><p><strong>Results: </strong>The combination of vegetation indices and optical traits greatly improved predictive power in both the biomass (R<sup>2</sup> = 0.60, Root mean square error (RMSE) = 88.55 g/m<sup>2</sup>) and relative nitrogen models (R<sup>2</sup> = 0.34, RMSE = 0.28%). Both female and male red deer selected more strongly for biomass (estimate = 0.672 ± 0.059 SE for normalised values for females, and 0.507 ± 0.061 for males) than relative nitrogen (estimate = 0.124 ± 0.062 for females, and 0.161 ± 0.061 for males, respectively). Females showed higher levels of use of the Swiss National Park.</p><p><strong>Conclusions: </strong>Red deer in summer habitats select forage quantity over quality with little difference between sexes. Females respond more strongly to human activities and thus prefer the Swiss National Park. Our results demonstrate the capability of satellite data to estimate forage quality and quantity separately for movement ecology studies, going beyond the exclusive use of conventional vegetation indices.</p>\",\"PeriodicalId\":54288,\"journal\":{\"name\":\"Movement Ecology\",\"volume\":\"12 1\",\"pages\":\"80\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11654361/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Movement Ecology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1186/s40462-024-00521-6\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Movement Ecology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40462-024-00521-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

背景:野生有蹄类动物的生境利用不仅取决于草料的可得性,而且还取决于避免捕食和人为干扰。它们应该采用以最低成本提供最多能量的觅食策略。然而,由于在运动轨迹尺度上的数据限制,即使是马鹿(Cervus elaphus)等被充分研究的物种,特别是在植被期短的异质高山栖息地,也不清楚饲料质量和数量之间的权衡程度。方法:利用遥感数据获取牧草质量和数量的空间连续信息。为了预测相对氮(即饲料质量)和生物量(即饲料数量),我们将现场数据与来自Sentinel-2卫星数据的预测变量相关联。特别是,我们的方法采用随机森林回归算法,整合了各种遥感变量,如反射率值、植被指数和辐射传输模型得出的光学性状。我们将这些牧草特征与代表人类活动的变量相结合,应用综合阶跃选择函数估算了瑞士国家公园(一个高山严格自然保护区)及其周边开放栖息地马鹿的性别特异性夏季栖息地选择。结果:植被指数与光学性状的结合显著提高了生物量模型(R2 = 0.60,均方根误差(RMSE) = 88.55 g/m2)和相对氮模型(R2 = 0.34, RMSE = 0.28%)的预测能力。雌马鹿和雄马鹿对生物量的选择均高于相对氮(雌马鹿和雄马鹿分别为0.124±0.062和0.161±0.061),雌马鹿和雄马鹿分别为0.672±0.059和0.507±0.061。雌性对瑞士国家公园的利用程度更高。结论:夏季生境马鹿重饲料量轻饲料质量,雌雄差异不大。雌性对人类活动的反应更强烈,因此更喜欢瑞士国家公园。我们的研究结果表明,卫星数据能够在运动生态学研究中单独估计饲料质量和数量,而不仅仅是使用传统的植被指数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Remote sensing reveals the role of forage quality and quantity for summer habitat use in red deer.

Background: The habitat use of wild ungulates is determined by forage availability, but also the avoidance of predation and human disturbance. They should apply foraging strategies that provide the most energy at the lowest cost. However, due to data limitations at the scale of movement trajectories, it is not clear to what extent even well-studied species such as red deer (Cervus elaphus) trade-off between forage quality and quantity, especially in heterogeneous alpine habitats characterized by short vegetation periods.

Methods: We used remote sensing data to derive spatially continuous forage quality and quantity information. To predict relative nitrogen (i.e. forage quality) and biomass (i.e. forage quantity), we related field data to predictor variables derived from Sentinel-2 satellite data. In particular, our approach employed random forest regression algorithms, integrating various remote sensing variables such as reflectance values, vegetation indices and optical traits derived from a radiative transfer model. We combined these forage characteristics with variables representing human activity, and applied integrated step selection functions to estimate sex-specific summer habitat selection of red deer in open habitats within and around the Swiss National Park, an alpine Strict Nature Reserve.

Results: The combination of vegetation indices and optical traits greatly improved predictive power in both the biomass (R2 = 0.60, Root mean square error (RMSE) = 88.55 g/m2) and relative nitrogen models (R2 = 0.34, RMSE = 0.28%). Both female and male red deer selected more strongly for biomass (estimate = 0.672 ± 0.059 SE for normalised values for females, and 0.507 ± 0.061 for males) than relative nitrogen (estimate = 0.124 ± 0.062 for females, and 0.161 ± 0.061 for males, respectively). Females showed higher levels of use of the Swiss National Park.

Conclusions: Red deer in summer habitats select forage quantity over quality with little difference between sexes. Females respond more strongly to human activities and thus prefer the Swiss National Park. Our results demonstrate the capability of satellite data to estimate forage quality and quantity separately for movement ecology studies, going beyond the exclusive use of conventional vegetation indices.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Movement Ecology
Movement Ecology Agricultural and Biological Sciences-Ecology, Evolution, Behavior and Systematics
CiteScore
6.60
自引率
4.90%
发文量
47
审稿时长
23 weeks
期刊介绍: Movement Ecology is an open-access interdisciplinary journal publishing novel insights from empirical and theoretical approaches into the ecology of movement of the whole organism - either animals, plants or microorganisms - as the central theme. We welcome manuscripts on any taxa and any movement phenomena (e.g. foraging, dispersal and seasonal migration) addressing important research questions on the patterns, mechanisms, causes and consequences of organismal movement. Manuscripts will be rigorously peer-reviewed to ensure novelty and high quality.
期刊最新文献
How do red foxes (Vulpes vulpes) explore their environment? Characteristics of movement patterns in time and space. North American avian species that migrate in flocks show greater long-term non-breeding range shift rates. Seasonal coastal residency and large-scale migration of two grey mullet species in temperate European waters. The influence of thermal and hypoxia induced habitat compression on walleye (Sander vitreus) movements in a temperate lake. Density-dependent distributions of hosts and parasitoids resulting from density-independent dispersal rules: implications for host-parasitoid interactions and population dynamics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1