产前暴露于高雄激素对后代海马神经发育和自闭症样行为的影响。

IF 5.3 2区 医学 Q1 CLINICAL NEUROLOGY Progress in Neuro-Psychopharmacology & Biological Psychiatry Pub Date : 2025-01-10 DOI:10.1016/j.pnpbp.2024.111219
Dan Qiao , Chenyu Mu , Huan Chen , Di Wen , Zhao Wang , Bohan Zhang , Fangzhen Guo , Chang Wang , Rong Zhang , Chongying Wang , Huixian Cui , Sha Li
{"title":"产前暴露于高雄激素对后代海马神经发育和自闭症样行为的影响。","authors":"Dan Qiao ,&nbsp;Chenyu Mu ,&nbsp;Huan Chen ,&nbsp;Di Wen ,&nbsp;Zhao Wang ,&nbsp;Bohan Zhang ,&nbsp;Fangzhen Guo ,&nbsp;Chang Wang ,&nbsp;Rong Zhang ,&nbsp;Chongying Wang ,&nbsp;Huixian Cui ,&nbsp;Sha Li","doi":"10.1016/j.pnpbp.2024.111219","DOIUrl":null,"url":null,"abstract":"<div><div>Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that significantly jeopardizes the physical and mental well-being of children. Autism spectrum disorder results from a combination of environmental and genetic factors. Hyperandrogenic exposure during pregnancy increases their risk of developing autism. Nevertheless, the prenatal exposure to androgens affects offspring neurodevelopment and the underlying mechanisms have not been fully elucidated. In the present study, administration of excessive dihydrotestosterone (DHT) to pregnant mice was found to impair neuronal development and dendritic spine formation in offspring, inducing autism-like behaviors. Furthermore, through mRNA transcriptome sequencing technology, the key molecule Nr4a2 was identified during this process of change. Overexpression of Nr4a2 and treatment with amodiaquine (AQ) significantly improved the abnormal phenotypes in offspring caused by prenatal exposure to androgens. Overall, Nr4a2 emerges as a crucial molecule involved in the impairment of offspring neurodevelopment due to prenatal androgen exposure, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms.</div></div>","PeriodicalId":54549,"journal":{"name":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","volume":"136 ","pages":"Article 111219"},"PeriodicalIF":5.3000,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implications of prenatal exposure to hyperandrogen for hippocampal neurodevelopment and autism-like behavior in offspring\",\"authors\":\"Dan Qiao ,&nbsp;Chenyu Mu ,&nbsp;Huan Chen ,&nbsp;Di Wen ,&nbsp;Zhao Wang ,&nbsp;Bohan Zhang ,&nbsp;Fangzhen Guo ,&nbsp;Chang Wang ,&nbsp;Rong Zhang ,&nbsp;Chongying Wang ,&nbsp;Huixian Cui ,&nbsp;Sha Li\",\"doi\":\"10.1016/j.pnpbp.2024.111219\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that significantly jeopardizes the physical and mental well-being of children. Autism spectrum disorder results from a combination of environmental and genetic factors. Hyperandrogenic exposure during pregnancy increases their risk of developing autism. Nevertheless, the prenatal exposure to androgens affects offspring neurodevelopment and the underlying mechanisms have not been fully elucidated. In the present study, administration of excessive dihydrotestosterone (DHT) to pregnant mice was found to impair neuronal development and dendritic spine formation in offspring, inducing autism-like behaviors. Furthermore, through mRNA transcriptome sequencing technology, the key molecule Nr4a2 was identified during this process of change. Overexpression of Nr4a2 and treatment with amodiaquine (AQ) significantly improved the abnormal phenotypes in offspring caused by prenatal exposure to androgens. Overall, Nr4a2 emerges as a crucial molecule involved in the impairment of offspring neurodevelopment due to prenatal androgen exposure, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms.</div></div>\",\"PeriodicalId\":54549,\"journal\":{\"name\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"volume\":\"136 \",\"pages\":\"Article 111219\"},\"PeriodicalIF\":5.3000,\"publicationDate\":\"2025-01-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Neuro-Psychopharmacology & Biological Psychiatry\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0278584624002872\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Neuro-Psychopharmacology & Biological Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0278584624002872","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0

摘要

自闭症谱系障碍(ASD)是一种高度异质性的神经发育障碍,严重危害儿童的身心健康。自闭症谱系障碍是环境和遗传因素共同作用的结果。怀孕期间暴露于高雄激素会增加患自闭症的风险。然而,产前暴露于雄激素影响后代神经发育和潜在的机制尚未完全阐明。在本研究中,发现给怀孕小鼠过量的双氢睾酮(DHT)会损害后代的神经元发育和树突棘形成,诱发自闭症样行为。进一步,通过mRNA转录组测序技术,确定了这一变化过程中的关键分子Nr4a2。Nr4a2过表达和阿莫地喹(amodiaquine, AQ)治疗可显著改善产前暴露于雄激素所致子代的异常表型。综上所述,Nr4a2作为产前雄激素暴露导致子代神经发育障碍的关键分子,为深入研究其影响因素和机制提供了新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implications of prenatal exposure to hyperandrogen for hippocampal neurodevelopment and autism-like behavior in offspring
Autism spectrum disorder (ASD) is a highly heterogeneous neurodevelopmental disorder that significantly jeopardizes the physical and mental well-being of children. Autism spectrum disorder results from a combination of environmental and genetic factors. Hyperandrogenic exposure during pregnancy increases their risk of developing autism. Nevertheless, the prenatal exposure to androgens affects offspring neurodevelopment and the underlying mechanisms have not been fully elucidated. In the present study, administration of excessive dihydrotestosterone (DHT) to pregnant mice was found to impair neuronal development and dendritic spine formation in offspring, inducing autism-like behaviors. Furthermore, through mRNA transcriptome sequencing technology, the key molecule Nr4a2 was identified during this process of change. Overexpression of Nr4a2 and treatment with amodiaquine (AQ) significantly improved the abnormal phenotypes in offspring caused by prenatal exposure to androgens. Overall, Nr4a2 emerges as a crucial molecule involved in the impairment of offspring neurodevelopment due to prenatal androgen exposure, which provides a new perspective for the in-depth study of the influencing factors and underlying mechanisms.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
12.00
自引率
1.80%
发文量
153
审稿时长
56 days
期刊介绍: Progress in Neuro-Psychopharmacology & Biological Psychiatry is an international and multidisciplinary journal which aims to ensure the rapid publication of authoritative reviews and research papers dealing with experimental and clinical aspects of neuro-psychopharmacology and biological psychiatry. Issues of the journal are regularly devoted wholly in or in part to a topical subject. Progress in Neuro-Psychopharmacology & Biological Psychiatry does not publish work on the actions of biological extracts unless the pharmacological active molecular substrate and/or specific receptor binding properties of the extract compounds are elucidated.
期刊最新文献
Microglia-derived sEV: Friend or foe in the pathogenesis of cognitive impairment. Two pores instead of one: Gating pore current and the electrical leak in autism and epilepsy Peripheral transcutaneous electrical stimulation to improve cognition: a review of the main effects in healthy humans and in mildly cognitively impaired patient populations Genetic insights of lipid metabolism and lipid-lowering drugs with Lewy body dementia risk: Evidence from Mendelian randomization The acute effects of methoxphenidine on behaviour and pharmacokinetics profile in animal model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1