基于物理信息的神经网络在多回波构型状态MRI中估计组织特性。

Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi
{"title":"基于物理信息的神经网络在多回波构型状态MRI中估计组织特性。","authors":"Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi","doi":"10.1007/978-3-031-72120-5_47","DOIUrl":null,"url":null,"abstract":"<p><p>This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> . Varying network architecture and data normalization had substantial impacts on estimated flip angle and <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.</p>","PeriodicalId":94280,"journal":{"name":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","volume":"15011 ","pages":"502-511"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653200/pdf/","citationCount":"0","resultStr":"{\"title\":\"Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI.\",\"authors\":\"Samuel I Adams-Tew, Henrik Odéen, Dennis L Parker, Cheng-Chieh Cheng, Bruno Madore, Allison Payne, Sarang Joshi\",\"doi\":\"10.1007/978-3-031-72120-5_47\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> </msub> </math> and <math> <msubsup><mrow><mi>T</mi></mrow> <mrow><mn>2</mn></mrow> <mrow><mi>*</mi></mrow> </msubsup> </math> . Varying network architecture and data normalization had substantial impacts on estimated flip angle and <math> <msub><mrow><mi>T</mi></mrow> <mrow><mn>1</mn></mrow> </msub> </math> , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.</p>\",\"PeriodicalId\":94280,\"journal\":{\"name\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"volume\":\"15011 \",\"pages\":\"502-511\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11653200/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/978-3-031-72120-5_47\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/3 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical image computing and computer-assisted intervention : MICCAI ... International Conference on Medical Image Computing and Computer-Assisted Intervention","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/978-3-031-72120-5_47","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/3 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

这项工作研究了配置状态成像与深度神经网络的使用,以开发用于介入性设置的定量MRI技术。提出了一种非均匀场和非均匀组织的物理建模技术,并用于评估神经网络从组态信号数据估计参数映射的理论能力。所有测试的归一化策略在估计t2和t2 *方面都取得了相似的性能。不同的网络结构和数据归一化对估计的翻转角和t1有实质性的影响,突出了它们在开发神经网络来解决这些逆问题中的重要性。开发的信号建模技术提供了一个环境,可以开发和评估用于MR参数映射的物理信息机器学习技术,并促进定量MRI技术的开发,以便在MR引导治疗期间为临床决策提供信息。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Physics Informed Neural Networks for Estimation of Tissue Properties from Multi-echo Configuration State MRI.

This work investigates the use of configuration state imaging together with deep neural networks to develop quantitative MRI techniques for deployment in an interventional setting. A physics modeling technique for inhomogeneous fields and heterogeneous tissues is presented and used to evaluate the theoretical capability of neural networks to estimate parameter maps from configuration state signal data. All tested normalization strategies achieved similar performance in estimating T 2 and T 2 * . Varying network architecture and data normalization had substantial impacts on estimated flip angle and T 1 , highlighting their importance in developing neural networks to solve these inverse problems. The developed signal modeling technique provides an environment that will enable the development and evaluation of physics-informed machine learning techniques for MR parameter mapping and facilitate the development of quantitative MRI techniques to inform clinical decisions during MR-guided treatments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MUTUAL: Towards Holistic Sensing and Inference in the Operating Room. Zoom Pattern Signatures for Fetal Ultrasound Structures. Self-guided Knowledge-Injected Graph Neural Network for Alzheimer's Diseases. Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation. Attention-Enhanced Fusion of Structural and Functional MRI for Analyzing HIV-Associated Asymptomatic Neurocognitive Impairment.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1