华北二叠纪-三叠纪陆相汞异常与火山作用的关系

IF 3.6 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Chemical Geology Pub Date : 2024-12-09 DOI:10.1016/j.chemgeo.2024.122555
Peixin Zhang, Minfang Yang, Jing Lu, Zhongfeng Jiang, Lei Wang, Yuanyuan Zhu, Wenjing Guo, Zejing Li, Zhibiao Shi, Pan Wang, Kai Zhou, Xiaotao Xu, Longyi Shao, Jason Hilton
{"title":"华北二叠纪-三叠纪陆相汞异常与火山作用的关系","authors":"Peixin Zhang, Minfang Yang, Jing Lu, Zhongfeng Jiang, Lei Wang, Yuanyuan Zhu, Wenjing Guo, Zejing Li, Zhibiao Shi, Pan Wang, Kai Zhou, Xiaotao Xu, Longyi Shao, Jason Hilton","doi":"10.1016/j.chemgeo.2024.122555","DOIUrl":null,"url":null,"abstract":"The Permian-Triassic mass extinction (PTME) is the most severe biological crisis in Earth history and is closely linked to massive contemporaneous volcanism. However, there is currently limited evidence of Mercury (Hg) enrichment directly from volcanic sources in terrestrial strata, necessitating evidence from different regions and latitudes to confirm the relationship between volcanism and changes in terrestrial environments and biotas. To explore this connection, we conducted a comprehensive analysis integrating astronomical cycles to provide a temporal framework, Hg concentrations, and Hg isotopes from terrestrial strata in the Yiyang Coalfield, located in the southern North China Plate (NCP). Our high-resolution astronomical timescale reveals that in the low latitude NCP the PTME commenced on land with the end-Permian Terrestrial Collapse (EPTC) which preceded the marine mass extinction by approximately 270 kyr and was latitudinally diachronous. The EPTC commenced in high-to-mid latitudes (75–30°S), then approximately 100–430 kyr later spread through different mid-to-low latitude regions (60–20°N) into equatorial paleolatitudes (10°N–0°). Hg isotopic results show that the initial Hg enrichment peak during the EPTC originated from terrestrial weathering and wildfire combustion rather than directly from volcanism, whereas the three subsequent Hg enrichment peaks over a 500 kyr interval following the EPTC originated directly from volcanism. This temporal coupling suggests that terrestrial ecosystems exhibited greater sensitivity and a more rapid response to global warming than marine ecosystems. Stratigraphic correlations show the early eruptive phase of the Siberian Traps Large Igneous Province (STLIP) led to gradual collapse of terrestrial ecosystems from high to low latitudes as they responded to increasingly warmer and more stressed conditions. The main eruptive phase of the STLIP, potentially augmented by contemporaneous widespread volcanism, may have ultimately led to the final collapse of terrestrial ecosystems and marine extinctions.","PeriodicalId":9847,"journal":{"name":"Chemical Geology","volume":"23 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Terrestrial mercury anomalies across the Permian-Triassic transition in North China linked to volcanism\",\"authors\":\"Peixin Zhang, Minfang Yang, Jing Lu, Zhongfeng Jiang, Lei Wang, Yuanyuan Zhu, Wenjing Guo, Zejing Li, Zhibiao Shi, Pan Wang, Kai Zhou, Xiaotao Xu, Longyi Shao, Jason Hilton\",\"doi\":\"10.1016/j.chemgeo.2024.122555\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Permian-Triassic mass extinction (PTME) is the most severe biological crisis in Earth history and is closely linked to massive contemporaneous volcanism. However, there is currently limited evidence of Mercury (Hg) enrichment directly from volcanic sources in terrestrial strata, necessitating evidence from different regions and latitudes to confirm the relationship between volcanism and changes in terrestrial environments and biotas. To explore this connection, we conducted a comprehensive analysis integrating astronomical cycles to provide a temporal framework, Hg concentrations, and Hg isotopes from terrestrial strata in the Yiyang Coalfield, located in the southern North China Plate (NCP). Our high-resolution astronomical timescale reveals that in the low latitude NCP the PTME commenced on land with the end-Permian Terrestrial Collapse (EPTC) which preceded the marine mass extinction by approximately 270 kyr and was latitudinally diachronous. The EPTC commenced in high-to-mid latitudes (75–30°S), then approximately 100–430 kyr later spread through different mid-to-low latitude regions (60–20°N) into equatorial paleolatitudes (10°N–0°). Hg isotopic results show that the initial Hg enrichment peak during the EPTC originated from terrestrial weathering and wildfire combustion rather than directly from volcanism, whereas the three subsequent Hg enrichment peaks over a 500 kyr interval following the EPTC originated directly from volcanism. This temporal coupling suggests that terrestrial ecosystems exhibited greater sensitivity and a more rapid response to global warming than marine ecosystems. Stratigraphic correlations show the early eruptive phase of the Siberian Traps Large Igneous Province (STLIP) led to gradual collapse of terrestrial ecosystems from high to low latitudes as they responded to increasingly warmer and more stressed conditions. The main eruptive phase of the STLIP, potentially augmented by contemporaneous widespread volcanism, may have ultimately led to the final collapse of terrestrial ecosystems and marine extinctions.\",\"PeriodicalId\":9847,\"journal\":{\"name\":\"Chemical Geology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":3.6000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1016/j.chemgeo.2024.122555\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1016/j.chemgeo.2024.122555","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

二叠纪-三叠纪生物大灭绝是地球历史上最严重的生物危机,与同期大规模火山活动密切相关。然而,目前陆地地层中直接从火山源富集汞的证据有限,需要来自不同地区和纬度的证据来证实火山作用与陆地环境和生物区系变化之间的关系。为了探讨这一联系,我们对华北板块南部益阳煤田进行了综合天文周期分析,提供了时间框架、汞浓度和汞同位素。我们的高分辨率天文时间标度显示,在低纬度NCP, PTME开始于陆地上,与二叠纪末陆地崩溃(EPTC)一起开始,这比海洋大灭绝早了大约270 kyr,并且在纬度上是历时的。EPTC始于高中纬度地区(75 ~ 30°S),约100 ~ 430 kyr后通过不同的中低纬度地区(60 ~ 20°N)传播到赤道古纬度地区(10°N ~ 0°)。汞同位素结果表明,EPTC初期的汞富集峰来源于陆地风化和野火燃烧,而不是火山作用,而EPTC之后500 kyr间隔内的3个汞富集峰直接来源于火山作用。这种时间耦合表明,与海洋生态系统相比,陆地生态系统对全球变暖表现出更大的敏感性和更快的响应。地层对比表明,西伯利亚圈闭大火成岩省(STLIP)的早期喷发阶段导致陆地生态系统从高纬度到低纬度逐渐崩溃,因为它们对日益温暖和压力的条件做出了反应。STLIP的主要喷发阶段,可能由于同时期广泛的火山活动而增强,可能最终导致陆地生态系统的最终崩溃和海洋物种的灭绝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Terrestrial mercury anomalies across the Permian-Triassic transition in North China linked to volcanism
The Permian-Triassic mass extinction (PTME) is the most severe biological crisis in Earth history and is closely linked to massive contemporaneous volcanism. However, there is currently limited evidence of Mercury (Hg) enrichment directly from volcanic sources in terrestrial strata, necessitating evidence from different regions and latitudes to confirm the relationship between volcanism and changes in terrestrial environments and biotas. To explore this connection, we conducted a comprehensive analysis integrating astronomical cycles to provide a temporal framework, Hg concentrations, and Hg isotopes from terrestrial strata in the Yiyang Coalfield, located in the southern North China Plate (NCP). Our high-resolution astronomical timescale reveals that in the low latitude NCP the PTME commenced on land with the end-Permian Terrestrial Collapse (EPTC) which preceded the marine mass extinction by approximately 270 kyr and was latitudinally diachronous. The EPTC commenced in high-to-mid latitudes (75–30°S), then approximately 100–430 kyr later spread through different mid-to-low latitude regions (60–20°N) into equatorial paleolatitudes (10°N–0°). Hg isotopic results show that the initial Hg enrichment peak during the EPTC originated from terrestrial weathering and wildfire combustion rather than directly from volcanism, whereas the three subsequent Hg enrichment peaks over a 500 kyr interval following the EPTC originated directly from volcanism. This temporal coupling suggests that terrestrial ecosystems exhibited greater sensitivity and a more rapid response to global warming than marine ecosystems. Stratigraphic correlations show the early eruptive phase of the Siberian Traps Large Igneous Province (STLIP) led to gradual collapse of terrestrial ecosystems from high to low latitudes as they responded to increasingly warmer and more stressed conditions. The main eruptive phase of the STLIP, potentially augmented by contemporaneous widespread volcanism, may have ultimately led to the final collapse of terrestrial ecosystems and marine extinctions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Geology
Chemical Geology 地学-地球化学与地球物理
CiteScore
7.20
自引率
10.30%
发文量
374
审稿时长
3.6 months
期刊介绍: Chemical Geology is an international journal that publishes original research papers on isotopic and elemental geochemistry, geochronology and cosmochemistry. The Journal focuses on chemical processes in igneous, metamorphic, and sedimentary petrology, low- and high-temperature aqueous solutions, biogeochemistry, the environment and cosmochemistry. Papers that are field, experimentally, or computationally based are appropriate if they are of broad international interest. The Journal generally does not publish papers that are primarily of regional or local interest, or which are primarily focused on remediation and applied geochemistry. The Journal also welcomes innovative papers dealing with significant analytical advances that are of wide interest in the community and extend significantly beyond the scope of what would be included in the methods section of a standard research paper.
期刊最新文献
Re-evaluation of the spherules proposed origin recovered from the Pacific Ocean site of the CNEOS 2014-01-08 (IM1) bolide Metal enrichment in the Cambrian black shale: Evidence from pyrite overgrowth and NanoSIMS sulfur isotopes BrGDGTs sources in eastern China marginal seas and their constraints on seawater temperature reconstruction Sulfate concentration and redox state control the pyrite formation and sulfur cycle in a T-OAE lake, Sichuan Basin, China Kimberlite segregation from an uppermost asthenospheric thermal boundary and the longevity of cold craton roots
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1