人碳酸酐酶抑制剂的多种结合模式:同型特异性活性调节剂设计的最新进展

IF 51.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Chemical Reviews Pub Date : 2024-12-19 DOI:10.1021/acs.chemrev.4c00278
Katia D’Ambrosio, Anna Di Fiore, Vincenzo Alterio, Emma Langella, Simona Maria Monti, Claudiu T. Supuran, Giuseppina De Simone
{"title":"人碳酸酐酶抑制剂的多种结合模式:同型特异性活性调节剂设计的最新进展","authors":"Katia D’Ambrosio, Anna Di Fiore, Vincenzo Alterio, Emma Langella, Simona Maria Monti, Claudiu T. Supuran, Giuseppina De Simone","doi":"10.1021/acs.chemrev.4c00278","DOIUrl":null,"url":null,"abstract":"Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO<sub>2</sub> to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (<contrib-group person-group-type=\"allauthors\"><span>Alterio, V.</span></contrib-group> et al. <cite><i>Chem Rev.</i></cite> <span>2012</span>, <em>112</em>, 4421−4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012–2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012–2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.","PeriodicalId":32,"journal":{"name":"Chemical Reviews","volume":"24 1","pages":""},"PeriodicalIF":51.4000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity\",\"authors\":\"Katia D’Ambrosio, Anna Di Fiore, Vincenzo Alterio, Emma Langella, Simona Maria Monti, Claudiu T. Supuran, Giuseppina De Simone\",\"doi\":\"10.1021/acs.chemrev.4c00278\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO<sub>2</sub> to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (<contrib-group person-group-type=\\\"allauthors\\\"><span>Alterio, V.</span></contrib-group> et al. <cite><i>Chem Rev.</i></cite> <span>2012</span>, <em>112</em>, 4421−4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012–2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012–2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.\",\"PeriodicalId\":32,\"journal\":{\"name\":\"Chemical Reviews\",\"volume\":\"24 1\",\"pages\":\"\"},\"PeriodicalIF\":51.4000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemical Reviews\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.chemrev.4c00278\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemical Reviews","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.chemrev.4c00278","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

人体碳酸酐酶(hCAs)是一种广泛存在的锌酶,可催化二氧化碳水合转化为碳酸氢盐和质子。目前已发现 15 种同工酶,其中只有 12 种具有催化活性。由于 hCAs 参与了许多生理和病理过程,因此是开发生物医学应用抑制剂的公认治疗目标。然而,尽管进行了大量的开发工作,目前可用的 hCA 抑制剂中只有极少数对特定的同工酶具有选择性。X 射线晶体学是合理设计酶抑制剂的有用工具。2012 年,我们在《化学评论》(Chemical Reviews)上发表了一篇关于 hCA 家族的综述(Alterio, V. et al. Chem Rev. 2012, 112, 4421-4468),分析了约 300 种 hCA/抑制剂复合物的晶体学结构,并描述了迄今为止存在的不同 CA 抑制机制,文章的引用率很高。然而,在 2012-2023 年期间,已有近 700 个新的 hCA/抑制剂复合物结构存入 PDB,并发现了大量新的抑制剂类别。基于这些考虑,本综述旨在全面介绍 2012-2023 年间 hCA/抑制剂相互作用结构方面的最新进展,并概述如何利用这些信息合理设计更具选择性的此类抑制剂。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Multiple Binding Modes of Inhibitors to Human Carbonic Anhydrases: An Update on the Design of Isoform-Specific Modulators of Activity
Human carbonic anhydrases (hCAs) are widespread zinc enzymes that catalyze the hydration of CO2 to bicarbonate and a proton. Currently, 15 isoforms have been identified, of which only 12 are catalytically active. Given their involvement in numerous physiological and pathological processes, hCAs are recognized therapeutic targets for the development of inhibitors with biomedical applications. However, despite massive development efforts, very few of the presently available hCA inhibitors show selectivity for a specific isoform. X-ray crystallography is a very useful tool for the rational drug design of enzyme inhibitors. In 2012 we published in Chemical Reviews a highly cited review on hCA family (Alterio, V. et al. Chem Rev. 2012, 112, 4421−4468), analyzing about 300 crystallographic structures of hCA/inhibitor complexes and describing the different CA inhibition mechanisms existing up to that date. However, in the period 2012–2023, almost 700 new hCA/inhibitor complex structures have been deposited in the PDB and a large number of new inhibitor classes have been discovered. Based on these considerations, the aim of this Review is to give a comprehensive update of the structural aspects of hCA/inhibitor interactions covering the period 2012–2023 and to recapitulate how this information can be used for the rational design of more selective versions of such inhibitors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Chemical Reviews
Chemical Reviews 化学-化学综合
CiteScore
106.00
自引率
1.10%
发文量
278
审稿时长
4.3 months
期刊介绍: Chemical Reviews is a highly regarded and highest-ranked journal covering the general topic of chemistry. Its mission is to provide comprehensive, authoritative, critical, and readable reviews of important recent research in organic, inorganic, physical, analytical, theoretical, and biological chemistry. Since 1985, Chemical Reviews has also published periodic thematic issues that focus on a single theme or direction of emerging research.
期刊最新文献
Confined Water for Catalysis: Thermodynamic Properties and Reaction Kinetics In Situ TEM Characterization of Battery Materials Characterizing Electrode Materials and Interfaces in Solid-State Batteries Proton Exchange Membrane (PEM) Water Electrolysis: Cell-Level Considerations for Gigawatt-Scale Deployment Electrocatalysis: From Planar Surfaces to Nanostructured Interfaces
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1