Tianxiang Li, Yao Wang, Yang Xu, Haosong Ren, Zhongren Lin, Zhenyue Li and Jun Zheng*,
{"title":"Zwitterionic π-Allyl-Pd Species Enabled [2σ+2π] Cycloaddition Reactions of Vinylbicyclo[1.1.0]butanes (VBCBs) with Alkenes, Carbonyls, and Imines","authors":"Tianxiang Li, Yao Wang, Yang Xu, Haosong Ren, Zhongren Lin, Zhenyue Li and Jun Zheng*, ","doi":"10.1021/acscatal.4c0666010.1021/acscatal.4c06660","DOIUrl":null,"url":null,"abstract":"<p >Transition-metal-catalyzed cycloaddition reactions of strained small-ring compounds are powerful methods for constructing carbo- and heterocyclic structures of medicinal interest. However, the application of this strategy to bicyclo[1.1.0]butanes (BCBs), which are among the most strained carbocycles known, remains underdeveloped. Herein, we report vinylbicyclo[1.1.0]butane (VBCB) as a platform synthon for palladium-catalyzed formal [2σ+2π] cycloaddition reactions with various 2π-components, enabling the synthesis of BCHs, oxa-BCHs, and aza-BCHs under identical reaction conditions. The zwitterionic π-allyl-Pd species generated through the palladium-catalyzed activation of VBCBs is the key to circumventing potential carbene reactivity and serves as a common intermediate for cycloadditions with diverse 2π-systems, including alkenes, aldehydes, ketones, and imines. Notably, by utilizing Pd<sub>2</sub>(dba)<sub>3</sub> and an anthracene-derived Trost ligand, a wide array of BCHs bearing two vicinal chiral centers has been prepared in a highly diastereo-, and enantioselective manner. The generality and practicality of this method have been demonstrated by a broad substrate scope, scale-up reactions, and the versatile transformation of multiple functional groups into BCH scaffolds. Preliminary mechanistic studies support the formation of the π-allyl-Pd species.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"14 24","pages":"18799–18809 18799–18809"},"PeriodicalIF":11.3000,"publicationDate":"2024-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.4c06660","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
Zwitterionic π-Allyl-Pd Species Enabled [2σ+2π] Cycloaddition Reactions of Vinylbicyclo[1.1.0]butanes (VBCBs) with Alkenes, Carbonyls, and Imines
Transition-metal-catalyzed cycloaddition reactions of strained small-ring compounds are powerful methods for constructing carbo- and heterocyclic structures of medicinal interest. However, the application of this strategy to bicyclo[1.1.0]butanes (BCBs), which are among the most strained carbocycles known, remains underdeveloped. Herein, we report vinylbicyclo[1.1.0]butane (VBCB) as a platform synthon for palladium-catalyzed formal [2σ+2π] cycloaddition reactions with various 2π-components, enabling the synthesis of BCHs, oxa-BCHs, and aza-BCHs under identical reaction conditions. The zwitterionic π-allyl-Pd species generated through the palladium-catalyzed activation of VBCBs is the key to circumventing potential carbene reactivity and serves as a common intermediate for cycloadditions with diverse 2π-systems, including alkenes, aldehydes, ketones, and imines. Notably, by utilizing Pd2(dba)3 and an anthracene-derived Trost ligand, a wide array of BCHs bearing two vicinal chiral centers has been prepared in a highly diastereo-, and enantioselective manner. The generality and practicality of this method have been demonstrated by a broad substrate scope, scale-up reactions, and the versatile transformation of multiple functional groups into BCH scaffolds. Preliminary mechanistic studies support the formation of the π-allyl-Pd species.
期刊介绍:
ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels.
The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.