双极脉冲作用下铸造树脂变压器的局部放电和退化特性

IF 2.9 3区 工程技术 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Dielectrics and Electrical Insulation Pub Date : 2024-09-25 DOI:10.1109/TDEI.2024.3468249
Yuanhang Yao;Mizuki Miyagawa;Masayuki Hikita;Masahiro Kozako;Yoshihiro Harada;Katsutoshi Takei;Masaru Ikeda;Kazunori Miyazaki;Kazuhiro Futakawa
{"title":"双极脉冲作用下铸造树脂变压器的局部放电和退化特性","authors":"Yuanhang Yao;Mizuki Miyagawa;Masayuki Hikita;Masahiro Kozako;Yoshihiro Harada;Katsutoshi Takei;Masaru Ikeda;Kazunori Miyazaki;Kazuhiro Futakawa","doi":"10.1109/TDEI.2024.3468249","DOIUrl":null,"url":null,"abstract":"The objective of our work is to investigate partial discharge (PD) behaviors and degradation characteristics in winding insulation of an actual 22 kV cast resin transformer (CRTr) when subjected to bipolar impulse voltages. A differential high-frequency current transformer (HFCT) was employed on the high-voltage coils to measure PD pulses induced by impulse voltages. Additionally, PD measurement at ac voltage was carried out to characterize the aging process resulting from the application of bipolar impulses. Experimental findings indicated that higher-level bipolar impulses could cause large-amplitude PDs in the windings, occurring at the peak value of the applied impulse voltages and increasing with the number of applied impulses. PD inception voltage (PDIV) at ac voltage decreased to the operating voltage, and the discharge amplitude and phasewidth in phase-resolved PD (PRPD) patterns increased due to impulse PD occurrences. Considering these results, it is evident that the bipolar lightning impulses could cause large-amplitude PDs, intensify impulse PD activity, and ultimately lead to dielectric breakdown in the CRTr windings. Space charge accumulation and residual charge deposition resulting from impulse PD play a significant role in the generation and the process of development for impulse PDs in the winding insulation, contributing to an acceleration effect in the degradation process and eventual insulation failure.","PeriodicalId":13247,"journal":{"name":"IEEE Transactions on Dielectrics and Electrical Insulation","volume":"31 6","pages":"3489-3496"},"PeriodicalIF":2.9000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial Discharge and Degradation Characteristics of Cast Resin Transformers Due to Bipolar Impulse Application\",\"authors\":\"Yuanhang Yao;Mizuki Miyagawa;Masayuki Hikita;Masahiro Kozako;Yoshihiro Harada;Katsutoshi Takei;Masaru Ikeda;Kazunori Miyazaki;Kazuhiro Futakawa\",\"doi\":\"10.1109/TDEI.2024.3468249\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The objective of our work is to investigate partial discharge (PD) behaviors and degradation characteristics in winding insulation of an actual 22 kV cast resin transformer (CRTr) when subjected to bipolar impulse voltages. A differential high-frequency current transformer (HFCT) was employed on the high-voltage coils to measure PD pulses induced by impulse voltages. Additionally, PD measurement at ac voltage was carried out to characterize the aging process resulting from the application of bipolar impulses. Experimental findings indicated that higher-level bipolar impulses could cause large-amplitude PDs in the windings, occurring at the peak value of the applied impulse voltages and increasing with the number of applied impulses. PD inception voltage (PDIV) at ac voltage decreased to the operating voltage, and the discharge amplitude and phasewidth in phase-resolved PD (PRPD) patterns increased due to impulse PD occurrences. Considering these results, it is evident that the bipolar lightning impulses could cause large-amplitude PDs, intensify impulse PD activity, and ultimately lead to dielectric breakdown in the CRTr windings. Space charge accumulation and residual charge deposition resulting from impulse PD play a significant role in the generation and the process of development for impulse PDs in the winding insulation, contributing to an acceleration effect in the degradation process and eventual insulation failure.\",\"PeriodicalId\":13247,\"journal\":{\"name\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"volume\":\"31 6\",\"pages\":\"3489-3496\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Dielectrics and Electrical Insulation\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10693613/\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Dielectrics and Electrical Insulation","FirstCategoryId":"5","ListUrlMain":"https://ieeexplore.ieee.org/document/10693613/","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

我们的工作目的是研究实际的22 kV铸造树脂变压器(CRTr)在双极冲击电压作用下绕组绝缘的局部放电(PD)行为和退化特性。在高压线圈上采用高频差动电流互感器(HFCT)测量脉冲电压引起的局部放电脉冲。此外,在交流电压下进行了PD测量,以表征双极脉冲应用导致的老化过程。实验结果表明,高电平的双极脉冲可以在绕组中引起大幅度的脉冲放电,发生在施加脉冲电压的峰值处,并随着施加脉冲的数量而增加。交流电压下PD起始电压(PDIV)降低到工作电压,脉冲PD的发生增加了相分辨PD (PRPD)模式的放电幅度和相宽。考虑到这些结果,很明显,双极雷电脉冲可以引起大幅度的PD,增强脉冲PD活动,最终导致CRTr绕组的介电击穿。脉冲放电产生的空间电荷积累和残余电荷沉积在绕组绝缘脉冲放电的产生和发展过程中起着重要作用,加速了脉冲放电的降解过程,最终导致绝缘失效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Partial Discharge and Degradation Characteristics of Cast Resin Transformers Due to Bipolar Impulse Application
The objective of our work is to investigate partial discharge (PD) behaviors and degradation characteristics in winding insulation of an actual 22 kV cast resin transformer (CRTr) when subjected to bipolar impulse voltages. A differential high-frequency current transformer (HFCT) was employed on the high-voltage coils to measure PD pulses induced by impulse voltages. Additionally, PD measurement at ac voltage was carried out to characterize the aging process resulting from the application of bipolar impulses. Experimental findings indicated that higher-level bipolar impulses could cause large-amplitude PDs in the windings, occurring at the peak value of the applied impulse voltages and increasing with the number of applied impulses. PD inception voltage (PDIV) at ac voltage decreased to the operating voltage, and the discharge amplitude and phasewidth in phase-resolved PD (PRPD) patterns increased due to impulse PD occurrences. Considering these results, it is evident that the bipolar lightning impulses could cause large-amplitude PDs, intensify impulse PD activity, and ultimately lead to dielectric breakdown in the CRTr windings. Space charge accumulation and residual charge deposition resulting from impulse PD play a significant role in the generation and the process of development for impulse PDs in the winding insulation, contributing to an acceleration effect in the degradation process and eventual insulation failure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Dielectrics and Electrical Insulation
IEEE Transactions on Dielectrics and Electrical Insulation 工程技术-工程:电子与电气
CiteScore
6.00
自引率
22.60%
发文量
309
审稿时长
5.2 months
期刊介绍: Topics that are concerned with dielectric phenomena and measurements, with development and characterization of gaseous, vacuum, liquid and solid electrical insulating materials and systems; and with utilization of these materials in circuits and systems under condition of use.
期刊最新文献
2024 Index IEEE Transactions on Dielectrics and Electrical Insulation Vol. 31 Table of Contents Editorial Condition Monitoring and Diagnostics of Electrical Insulation IEEE Transactions on Dielectrics and Electrical Insulation Information for Authors IEEE Transactions on Dielectrics and Electrical Insulation Publication Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1