T. V. Kobzeva, G. G. Dultseva, S. N. Dubtsov, M. E. Stekleneva
{"title":"大气中有机气溶胶的自然和人为来源:西伯利亚西部森林草原带的动力学和形成机制","authors":"T. V. Kobzeva, G. G. Dultseva, S. N. Dubtsov, M. E. Stekleneva","doi":"10.1134/S1024856024700830","DOIUrl":null,"url":null,"abstract":"<p>Contribution of carbonyl compounds into the generation of atmospheric organic aerosol in the presence of typical urban air pollutants is investigated. Aldehydes and ketones entering the atmosphere from natural and anthropogenic sources are identified by means of high-performance liquid chromatography. Field measurements were carried out on the territory of Novosibirsk scientific center and in adjacent forest areas. It is shown that the transport of typical gaseous urban air pollutants (nitrogen oxides and ozone) into the air of forest areas and the transport of biogenic compounds (alkenes and aldehydes) to the urban territory cause sharp changes of the kinetics and mechanism of organic aerosol generation in comparison with the processes taking place in typical urban atmosphere. Thus, in the presence of ozone, the yield of aerosol products from formaldehyde, acetaldehyde, and propanal photonucleation increases by a factor of 4–8, while for benzaldehyde and acrolein it exhibits 5- and 30-fold decrease, respectively. For aromatic substituted aldehydes and furfural, aerosol yield slightly increases (only up to 30%). The results make it possible to carry out quantitative evaluation of the capacity of natural and anthropogenic sources of organic aerosol in the forest-steppe zone of Western Siberia and predict the biological effect of aerosol generated in the presence of various pollutants.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"614 - 619"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Natural and Anthropogenic Sources of Organic Aerosol in the Atmosphere: Kinetics and Mechanism of Formation in the Forest-steppe Zone of West Siberia\",\"authors\":\"T. V. Kobzeva, G. G. Dultseva, S. N. Dubtsov, M. E. Stekleneva\",\"doi\":\"10.1134/S1024856024700830\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contribution of carbonyl compounds into the generation of atmospheric organic aerosol in the presence of typical urban air pollutants is investigated. Aldehydes and ketones entering the atmosphere from natural and anthropogenic sources are identified by means of high-performance liquid chromatography. Field measurements were carried out on the territory of Novosibirsk scientific center and in adjacent forest areas. It is shown that the transport of typical gaseous urban air pollutants (nitrogen oxides and ozone) into the air of forest areas and the transport of biogenic compounds (alkenes and aldehydes) to the urban territory cause sharp changes of the kinetics and mechanism of organic aerosol generation in comparison with the processes taking place in typical urban atmosphere. Thus, in the presence of ozone, the yield of aerosol products from formaldehyde, acetaldehyde, and propanal photonucleation increases by a factor of 4–8, while for benzaldehyde and acrolein it exhibits 5- and 30-fold decrease, respectively. For aromatic substituted aldehydes and furfural, aerosol yield slightly increases (only up to 30%). The results make it possible to carry out quantitative evaluation of the capacity of natural and anthropogenic sources of organic aerosol in the forest-steppe zone of Western Siberia and predict the biological effect of aerosol generated in the presence of various pollutants.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":\"37 5\",\"pages\":\"614 - 619\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700830\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700830","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Natural and Anthropogenic Sources of Organic Aerosol in the Atmosphere: Kinetics and Mechanism of Formation in the Forest-steppe Zone of West Siberia
Contribution of carbonyl compounds into the generation of atmospheric organic aerosol in the presence of typical urban air pollutants is investigated. Aldehydes and ketones entering the atmosphere from natural and anthropogenic sources are identified by means of high-performance liquid chromatography. Field measurements were carried out on the territory of Novosibirsk scientific center and in adjacent forest areas. It is shown that the transport of typical gaseous urban air pollutants (nitrogen oxides and ozone) into the air of forest areas and the transport of biogenic compounds (alkenes and aldehydes) to the urban territory cause sharp changes of the kinetics and mechanism of organic aerosol generation in comparison with the processes taking place in typical urban atmosphere. Thus, in the presence of ozone, the yield of aerosol products from formaldehyde, acetaldehyde, and propanal photonucleation increases by a factor of 4–8, while for benzaldehyde and acrolein it exhibits 5- and 30-fold decrease, respectively. For aromatic substituted aldehydes and furfural, aerosol yield slightly increases (only up to 30%). The results make it possible to carry out quantitative evaluation of the capacity of natural and anthropogenic sources of organic aerosol in the forest-steppe zone of Western Siberia and predict the biological effect of aerosol generated in the presence of various pollutants.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.