创建和调整储层碳氢化合物系统 PVT 模型的分步算法

IF 1.827 Q2 Earth and Planetary Sciences Arabian Journal of Geosciences Pub Date : 2024-12-20 DOI:10.1007/s12517-024-12150-9
Taras S. Yushchenko, Alexander I. Brusilovsky
{"title":"创建和调整储层碳氢化合物系统 PVT 模型的分步算法","authors":"Taras S. Yushchenko,&nbsp;Alexander I. Brusilovsky","doi":"10.1007/s12517-024-12150-9","DOIUrl":null,"url":null,"abstract":"<div><p>The reservoir fluid PVT model is necessary to all types of hydrodynamic modelling (field development, well flow, well test, basin modelling, etc.). The PVT model, when not properly tuned, can result in significant inaccuracies in calculating PVT properties and field production of volatile oil and gas-condensate systems. The process of tuning the reservoir fluid PVT model is a complex and time-consuming task. Various methods, such as regression and machine learning (ML), have been employed for reservoir oil PVT model tuning; however, a definitive approach has not yet been identified. This paper introduces a novel and efficient step-by-step approach for developing and tuning reservoir fluid PVT which enables engineers to tune PVT models much faster than before. The new proposed approach can assist in the initialisation of a PVT model by employing effective methods for initial data pre-processing. Furthermore, it can accurately reproduce the results obtained from field measurements and basic laboratory studies conducted on representative samples, in a model using a cubic equation of state. Tuning the PVT model enables the reliable modelling of the PVT properties of all five types of reservoir fluids (black oil, volatile oil, gas condensate, wet gas, dry gas) in various applications; the applications include the design and monitoring of field development, multiphase flow calculations in wells and field pipelines, and basin modelling. It is possible to algorithmise and automate the application of this approach in specialised software. This study considered eight Russian reservoir oil and gas-condensate systems, for which the PVT models were tuned, using the proposed approach. The comparison between proposed approach and other tuning methods in modern PVT simulators (PVTi, PVTsim, Multiflash, PVT Designer) is shown in the article. These examples show the effectiveness of the proposed approach.</p></div>","PeriodicalId":476,"journal":{"name":"Arabian Journal of Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.8270,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Step-by-step algorithm for creating and tuning a PVT model for a reservoir hydrocarbon system\",\"authors\":\"Taras S. Yushchenko,&nbsp;Alexander I. Brusilovsky\",\"doi\":\"10.1007/s12517-024-12150-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The reservoir fluid PVT model is necessary to all types of hydrodynamic modelling (field development, well flow, well test, basin modelling, etc.). The PVT model, when not properly tuned, can result in significant inaccuracies in calculating PVT properties and field production of volatile oil and gas-condensate systems. The process of tuning the reservoir fluid PVT model is a complex and time-consuming task. Various methods, such as regression and machine learning (ML), have been employed for reservoir oil PVT model tuning; however, a definitive approach has not yet been identified. This paper introduces a novel and efficient step-by-step approach for developing and tuning reservoir fluid PVT which enables engineers to tune PVT models much faster than before. The new proposed approach can assist in the initialisation of a PVT model by employing effective methods for initial data pre-processing. Furthermore, it can accurately reproduce the results obtained from field measurements and basic laboratory studies conducted on representative samples, in a model using a cubic equation of state. Tuning the PVT model enables the reliable modelling of the PVT properties of all five types of reservoir fluids (black oil, volatile oil, gas condensate, wet gas, dry gas) in various applications; the applications include the design and monitoring of field development, multiphase flow calculations in wells and field pipelines, and basin modelling. It is possible to algorithmise and automate the application of this approach in specialised software. This study considered eight Russian reservoir oil and gas-condensate systems, for which the PVT models were tuned, using the proposed approach. The comparison between proposed approach and other tuning methods in modern PVT simulators (PVTi, PVTsim, Multiflash, PVT Designer) is shown in the article. These examples show the effectiveness of the proposed approach.</p></div>\",\"PeriodicalId\":476,\"journal\":{\"name\":\"Arabian Journal of Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.8270,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Arabian Journal of Geosciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12517-024-12150-9\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Earth and Planetary Sciences\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Arabian Journal of Geosciences","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s12517-024-12150-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Earth and Planetary Sciences","Score":null,"Total":0}
引用次数: 0

摘要

油藏流体PVT模型是各种流体动力学建模(油田开发、井流、试井、盆地建模等)所必需的。如果不适当调整PVT模型,在计算挥发性油气凝析系统的PVT特性和现场产量时可能会导致严重的不准确性。储层流体PVT模型的调校过程是一项复杂而耗时的任务。各种方法,如回归和机器学习(ML),已被用于油藏石油PVT模型的调整;但是,尚未确定确定的办法。本文介绍了一种新颖有效的油层流体PVT开发和调校方法,使工程师能够比以前更快地调校PVT模型。该方法采用有效的初始数据预处理方法,有助于PVT模型的初始化。此外,它可以在使用三次状态方程的模型中准确地再现从现场测量和对代表性样品进行的基础实验室研究中获得的结果。调整PVT模型可以在各种应用中对所有五种类型的储层流体(黑油、挥发油、凝析油、湿气、干气)的PVT特性进行可靠的建模;应用包括油田开发的设计和监测、油井和油田管道的多相流计算以及盆地建模。在专门的软件中对这种方法的应用进行算法化和自动化是可能的。该研究考虑了八个俄罗斯油藏油气凝析系统,并使用所提出的方法对PVT模型进行了调整。文中还比较了该方法与现代PVT仿真器(PVTi、PVTsim、Multiflash、PVT Designer)中其它调优方法的优缺点。这些实例表明了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Step-by-step algorithm for creating and tuning a PVT model for a reservoir hydrocarbon system

The reservoir fluid PVT model is necessary to all types of hydrodynamic modelling (field development, well flow, well test, basin modelling, etc.). The PVT model, when not properly tuned, can result in significant inaccuracies in calculating PVT properties and field production of volatile oil and gas-condensate systems. The process of tuning the reservoir fluid PVT model is a complex and time-consuming task. Various methods, such as regression and machine learning (ML), have been employed for reservoir oil PVT model tuning; however, a definitive approach has not yet been identified. This paper introduces a novel and efficient step-by-step approach for developing and tuning reservoir fluid PVT which enables engineers to tune PVT models much faster than before. The new proposed approach can assist in the initialisation of a PVT model by employing effective methods for initial data pre-processing. Furthermore, it can accurately reproduce the results obtained from field measurements and basic laboratory studies conducted on representative samples, in a model using a cubic equation of state. Tuning the PVT model enables the reliable modelling of the PVT properties of all five types of reservoir fluids (black oil, volatile oil, gas condensate, wet gas, dry gas) in various applications; the applications include the design and monitoring of field development, multiphase flow calculations in wells and field pipelines, and basin modelling. It is possible to algorithmise and automate the application of this approach in specialised software. This study considered eight Russian reservoir oil and gas-condensate systems, for which the PVT models were tuned, using the proposed approach. The comparison between proposed approach and other tuning methods in modern PVT simulators (PVTi, PVTsim, Multiflash, PVT Designer) is shown in the article. These examples show the effectiveness of the proposed approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Arabian Journal of Geosciences
Arabian Journal of Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
自引率
0.00%
发文量
1587
审稿时长
6.7 months
期刊介绍: The Arabian Journal of Geosciences is the official journal of the Saudi Society for Geosciences and publishes peer-reviewed original and review articles on the entire range of Earth Science themes, focused on, but not limited to, those that have regional significance to the Middle East and the Euro-Mediterranean Zone. Key topics therefore include; geology, hydrogeology, earth system science, petroleum sciences, geophysics, seismology and crustal structures, tectonics, sedimentology, palaeontology, metamorphic and igneous petrology, natural hazards, environmental sciences and sustainable development, geoarchaeology, geomorphology, paleo-environment studies, oceanography, atmospheric sciences, GIS and remote sensing, geodesy, mineralogy, volcanology, geochemistry and metallogenesis.
期刊最新文献
Numerical investigation on energy efficiency of horizontal heat pump systems in buildings heating and cooling: case study of Mostaganem (Algeria) Stability analysis of overburden rocks—a new approach An up-to-date perspective on technological accidents triggered by natural events Investigation of radiation shielding parameters of different heavy metallic glass compositions for gamma radiations Microbial dynamics in soil: Impacts on fertility, nutrient cycling, and soil properties for sustainable geosciences—people, planet, and prosperity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1