废物增值及其对循环经济的贡献:水处理污泥作为磷吸附材料的评价及其农业再利用潜力

IF 3.8 4区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Water, Air, & Soil Pollution Pub Date : 2024-12-21 DOI:10.1007/s11270-024-07699-w
Marcio Yukihiro Kohatsu, Maria do Carmo Calijuri, Renato Zimiani de Paula, Camila Clementina Arantes, Camila Neves Lange, Mariana Neves Ribeiro, Kayllane da Silva Novais, Julia de Morais Alves, Alessandro Lamarca Urzedo, Tatiane Araujo de Jesus
{"title":"废物增值及其对循环经济的贡献:水处理污泥作为磷吸附材料的评价及其农业再利用潜力","authors":"Marcio Yukihiro Kohatsu,&nbsp;Maria do Carmo Calijuri,&nbsp;Renato Zimiani de Paula,&nbsp;Camila Clementina Arantes,&nbsp;Camila Neves Lange,&nbsp;Mariana Neves Ribeiro,&nbsp;Kayllane da Silva Novais,&nbsp;Julia de Morais Alves,&nbsp;Alessandro Lamarca Urzedo,&nbsp;Tatiane Araujo de Jesus","doi":"10.1007/s11270-024-07699-w","DOIUrl":null,"url":null,"abstract":"<div><p>Aluminium-based coagulants are extensively used in water treatment, producing significant quantities of waste sludge (WTS), that poses challenges for landfill disposal. Eutrophication, mainly driven by phosphorus (P) enrichment from wastewater, remains a critical environmental concern in aquatic ecosystems. WTS contains substantial amounts of aluminium (Al), which exhibits a high affinity for phosphate. This study aimed to assess the phosphorus adsorption capacity (qmax) of WTS and its potential for agricultural use. The WTS samples were characterized using various analytical techniques. Kinetic and isothermal experiments were conducted using dried (105 °C) and calcined (650 °C) WTS samples. Characterization revealed crystallinity differences between dried WTS and calcined WTS Kinetic tests, indicating equilibrium times of 16 h for dried WTS and 1 h for calcined WTS. Isothermal tests showed maximum adsorption capacity values at pH 7 of 13.81 mgP g<sup>−1</sup> for dried WTS and 52.03 mgP g<sup>−1</sup> for calcined WTS, highlighting the enhanced phosphorus removal efficiency of calcined WTS. Phytotoxicity assessments demonstrated that dried and calcined WTS promoted enhancements in germination and root elongation of <i>Lactuca sativa</i> of 20 and 10%, respectively, suggesting its potential agricultural benefit. Therefore, WTS demonstrates promise for tertiary wastewater treatment, contributing to a circular economy by potentially reclaiming phosphorus-rich compounds for agricultural reuse.</p></div>","PeriodicalId":808,"journal":{"name":"Water, Air, & Soil Pollution","volume":"236 1","pages":""},"PeriodicalIF":3.8000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Waste Valorisation and Contribution to the Circular Economy: The Evaluation of Water Treatment Sludge as a Phosphorus Adsorption Material and its Potential for Agricultural Reuse\",\"authors\":\"Marcio Yukihiro Kohatsu,&nbsp;Maria do Carmo Calijuri,&nbsp;Renato Zimiani de Paula,&nbsp;Camila Clementina Arantes,&nbsp;Camila Neves Lange,&nbsp;Mariana Neves Ribeiro,&nbsp;Kayllane da Silva Novais,&nbsp;Julia de Morais Alves,&nbsp;Alessandro Lamarca Urzedo,&nbsp;Tatiane Araujo de Jesus\",\"doi\":\"10.1007/s11270-024-07699-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Aluminium-based coagulants are extensively used in water treatment, producing significant quantities of waste sludge (WTS), that poses challenges for landfill disposal. Eutrophication, mainly driven by phosphorus (P) enrichment from wastewater, remains a critical environmental concern in aquatic ecosystems. WTS contains substantial amounts of aluminium (Al), which exhibits a high affinity for phosphate. This study aimed to assess the phosphorus adsorption capacity (qmax) of WTS and its potential for agricultural use. The WTS samples were characterized using various analytical techniques. Kinetic and isothermal experiments were conducted using dried (105 °C) and calcined (650 °C) WTS samples. Characterization revealed crystallinity differences between dried WTS and calcined WTS Kinetic tests, indicating equilibrium times of 16 h for dried WTS and 1 h for calcined WTS. Isothermal tests showed maximum adsorption capacity values at pH 7 of 13.81 mgP g<sup>−1</sup> for dried WTS and 52.03 mgP g<sup>−1</sup> for calcined WTS, highlighting the enhanced phosphorus removal efficiency of calcined WTS. Phytotoxicity assessments demonstrated that dried and calcined WTS promoted enhancements in germination and root elongation of <i>Lactuca sativa</i> of 20 and 10%, respectively, suggesting its potential agricultural benefit. Therefore, WTS demonstrates promise for tertiary wastewater treatment, contributing to a circular economy by potentially reclaiming phosphorus-rich compounds for agricultural reuse.</p></div>\",\"PeriodicalId\":808,\"journal\":{\"name\":\"Water, Air, & Soil Pollution\",\"volume\":\"236 1\",\"pages\":\"\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Water, Air, & Soil Pollution\",\"FirstCategoryId\":\"6\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11270-024-07699-w\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Water, Air, & Soil Pollution","FirstCategoryId":"6","ListUrlMain":"https://link.springer.com/article/10.1007/s11270-024-07699-w","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

铝基混凝剂广泛用于水处理,会产生大量废污泥 (WTS),给填埋处理带来挑战。富营养化主要是由废水中的磷(P)富集引起的,它仍然是水生生态系统中一个重要的环境问题。WTS 含有大量铝 (Al),而铝对磷酸盐有很高的亲和力。本研究旨在评估 WTS 的磷吸附能力(qmax)及其农业用途潜力。使用各种分析技术对 WTS 样品进行了表征。使用干燥(105 °C)和煅烧(650 °C)的 WTS 样品进行了动力学和等温线实验。表征结果显示,干燥 WTS 和煅烧 WTS 的结晶度存在差异 动力学试验表明,干燥 WTS 的平衡时间为 16 小时,而煅烧 WTS 的平衡时间为 1 小时。等温测试表明,在 pH 值为 7 时,干燥 WTS 的最大吸附容量值为 13.81 mgP g-1,而煅烧 WTS 为 52.03 mgP g-1,这表明煅烧 WTS 的除磷效率有所提高。植物毒性评估表明,干燥和煅烧的 WTS 可促进乳齿植物发芽和根系伸长,分别提高 20% 和 10%,这表明它具有潜在的农业效益。因此,WTS 在废水三级处理方面大有可为,它有可能回收富含磷的化合物用于农业再利用,从而为循环经济做出贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Waste Valorisation and Contribution to the Circular Economy: The Evaluation of Water Treatment Sludge as a Phosphorus Adsorption Material and its Potential for Agricultural Reuse

Aluminium-based coagulants are extensively used in water treatment, producing significant quantities of waste sludge (WTS), that poses challenges for landfill disposal. Eutrophication, mainly driven by phosphorus (P) enrichment from wastewater, remains a critical environmental concern in aquatic ecosystems. WTS contains substantial amounts of aluminium (Al), which exhibits a high affinity for phosphate. This study aimed to assess the phosphorus adsorption capacity (qmax) of WTS and its potential for agricultural use. The WTS samples were characterized using various analytical techniques. Kinetic and isothermal experiments were conducted using dried (105 °C) and calcined (650 °C) WTS samples. Characterization revealed crystallinity differences between dried WTS and calcined WTS Kinetic tests, indicating equilibrium times of 16 h for dried WTS and 1 h for calcined WTS. Isothermal tests showed maximum adsorption capacity values at pH 7 of 13.81 mgP g−1 for dried WTS and 52.03 mgP g−1 for calcined WTS, highlighting the enhanced phosphorus removal efficiency of calcined WTS. Phytotoxicity assessments demonstrated that dried and calcined WTS promoted enhancements in germination and root elongation of Lactuca sativa of 20 and 10%, respectively, suggesting its potential agricultural benefit. Therefore, WTS demonstrates promise for tertiary wastewater treatment, contributing to a circular economy by potentially reclaiming phosphorus-rich compounds for agricultural reuse.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Water, Air, & Soil Pollution
Water, Air, & Soil Pollution 环境科学-环境科学
CiteScore
4.50
自引率
6.90%
发文量
448
审稿时长
2.6 months
期刊介绍: Water, Air, & Soil Pollution is an international, interdisciplinary journal on all aspects of pollution and solutions to pollution in the biosphere. This includes chemical, physical and biological processes affecting flora, fauna, water, air and soil in relation to environmental pollution. Because of its scope, the subject areas are diverse and include all aspects of pollution sources, transport, deposition, accumulation, acid precipitation, atmospheric pollution, metals, aquatic pollution including marine pollution and ground water, waste water, pesticides, soil pollution, sewage, sediment pollution, forestry pollution, effects of pollutants on humans, vegetation, fish, aquatic species, micro-organisms, and animals, environmental and molecular toxicology applied to pollution research, biosensors, global and climate change, ecological implications of pollution and pollution models. Water, Air, & Soil Pollution also publishes manuscripts on novel methods used in the study of environmental pollutants, environmental toxicology, environmental biology, novel environmental engineering related to pollution, biodiversity as influenced by pollution, novel environmental biotechnology as applied to pollution (e.g. bioremediation), environmental modelling and biorestoration of polluted environments. Articles should not be submitted that are of local interest only and do not advance international knowledge in environmental pollution and solutions to pollution. Articles that simply replicate known knowledge or techniques while researching a local pollution problem will normally be rejected without review. Submitted articles must have up-to-date references, employ the correct experimental replication and statistical analysis, where needed and contain a significant contribution to new knowledge. The publishing and editorial team sincerely appreciate your cooperation. Water, Air, & Soil Pollution publishes research papers; review articles; mini-reviews; and book reviews.
期刊最新文献
Analysis and Evaluation of Potential Adsorbent for CO2 Capture in a CI Engine Exhaust: An Experimental Study Mesoporous Silica-Polyethyleneimine Composites as High-Capacity Adsorbents for CO2 Adsorption: Isotherm and Thermodynamic Analysis Toxicity Assessment of River Sediments Impacted by Open-Pit Coal Mining in Colombia Using Caenorhabditis elegans Combined Approach Using Soil and Fly Ash Analysis to Understand the Environmental Consequences of Coal Combustion in Thermal Power Stations in the City Advancements in Hybrid and Combined Biological Technologies for Treating Polluted Gases: A Comprehensive Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1