{"title":"用机器学习分析中子星的声速","authors":"Sagnik Chatterjee, Harsha Sudhakaran, Ritam Mallick","doi":"10.1140/epjc/s10052-024-13668-8","DOIUrl":null,"url":null,"abstract":"<div><p>Matter properties at the intermediate densities are still unknown to us. In this work, we use a neural network approach to study matter at intermediate densities to analyze the variation of the speed of sound and the measure of trace anomaly considering astrophysical constraints of mass–radius measurement of 18 neutron stars. Our numerical results show that there is a sharp rise in the speed of sound just beyond the saturation energy density. It attains a peak around 3–4 times the saturation energy density and, after that, decreases. This hints towards the appearance of new degrees of freedom and smooth transition from hadronic matter in massive stars. The trace anomaly is maximum at low density (surface of the stars) and decreases as we reach high density. It approaches zero and can even be slightly negative at the centre of massive stars. It has a negative trough beyond the maximal central densities of neutron stars. The change in sign of the trace anomaly hints towards a near-conformal matter at the centre of neutron stars, which may not necessarily be conformal quark matter.</p></div>","PeriodicalId":788,"journal":{"name":"The European Physical Journal C","volume":"84 12","pages":""},"PeriodicalIF":4.2000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13668-8.pdf","citationCount":"0","resultStr":"{\"title\":\"Analyzing the speed of sound in neutron star with machine learning\",\"authors\":\"Sagnik Chatterjee, Harsha Sudhakaran, Ritam Mallick\",\"doi\":\"10.1140/epjc/s10052-024-13668-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Matter properties at the intermediate densities are still unknown to us. In this work, we use a neural network approach to study matter at intermediate densities to analyze the variation of the speed of sound and the measure of trace anomaly considering astrophysical constraints of mass–radius measurement of 18 neutron stars. Our numerical results show that there is a sharp rise in the speed of sound just beyond the saturation energy density. It attains a peak around 3–4 times the saturation energy density and, after that, decreases. This hints towards the appearance of new degrees of freedom and smooth transition from hadronic matter in massive stars. The trace anomaly is maximum at low density (surface of the stars) and decreases as we reach high density. It approaches zero and can even be slightly negative at the centre of massive stars. It has a negative trough beyond the maximal central densities of neutron stars. The change in sign of the trace anomaly hints towards a near-conformal matter at the centre of neutron stars, which may not necessarily be conformal quark matter.</p></div>\",\"PeriodicalId\":788,\"journal\":{\"name\":\"The European Physical Journal C\",\"volume\":\"84 12\",\"pages\":\"\"},\"PeriodicalIF\":4.2000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1140/epjc/s10052-024-13668-8.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The European Physical Journal C\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1140/epjc/s10052-024-13668-8\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, PARTICLES & FIELDS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The European Physical Journal C","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1140/epjc/s10052-024-13668-8","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, PARTICLES & FIELDS","Score":null,"Total":0}
Analyzing the speed of sound in neutron star with machine learning
Matter properties at the intermediate densities are still unknown to us. In this work, we use a neural network approach to study matter at intermediate densities to analyze the variation of the speed of sound and the measure of trace anomaly considering astrophysical constraints of mass–radius measurement of 18 neutron stars. Our numerical results show that there is a sharp rise in the speed of sound just beyond the saturation energy density. It attains a peak around 3–4 times the saturation energy density and, after that, decreases. This hints towards the appearance of new degrees of freedom and smooth transition from hadronic matter in massive stars. The trace anomaly is maximum at low density (surface of the stars) and decreases as we reach high density. It approaches zero and can even be slightly negative at the centre of massive stars. It has a negative trough beyond the maximal central densities of neutron stars. The change in sign of the trace anomaly hints towards a near-conformal matter at the centre of neutron stars, which may not necessarily be conformal quark matter.
期刊介绍:
Experimental Physics I: Accelerator Based High-Energy Physics
Hadron and lepton collider physics
Lepton-nucleon scattering
High-energy nuclear reactions
Standard model precision tests
Search for new physics beyond the standard model
Heavy flavour physics
Neutrino properties
Particle detector developments
Computational methods and analysis tools
Experimental Physics II: Astroparticle Physics
Dark matter searches
High-energy cosmic rays
Double beta decay
Long baseline neutrino experiments
Neutrino astronomy
Axions and other weakly interacting light particles
Gravitational waves and observational cosmology
Particle detector developments
Computational methods and analysis tools
Theoretical Physics I: Phenomenology of the Standard Model and Beyond
Electroweak interactions
Quantum chromo dynamics
Heavy quark physics and quark flavour mixing
Neutrino physics
Phenomenology of astro- and cosmoparticle physics
Meson spectroscopy and non-perturbative QCD
Low-energy effective field theories
Lattice field theory
High temperature QCD and heavy ion physics
Phenomenology of supersymmetric extensions of the SM
Phenomenology of non-supersymmetric extensions of the SM
Model building and alternative models of electroweak symmetry breaking
Flavour physics beyond the SM
Computational algorithms and tools...etc.