{"title":"北极陆架海甲烷排放模式对气体交换参数化的敏感性","authors":"V. V. Malakhova, M. V. Kraineva","doi":"10.1134/S1024856024700933","DOIUrl":null,"url":null,"abstract":"<p>There is considerable uncertainty about the methane emission from Arctic shelf seas. Methane fluxes in this region can be underestimated and play a significant role due to the large volume of gas contained in bottom sediments in the permafrost and gas hydrates. We analyzed the model sensitivity to the parameterization of gas exchange processes on the sea surface based on the numerical modeling of the transport of dissolved methane in Arctic seas. A dissolved methane transport model is included into the basic model of the ocean and sea ice SibCIOM developed at Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences. Methane emissions into the atmosphere were estimated with various parameterization of the gas exchange process in the “water–atmosphere” and “water–ice–atmosphere” systems with NCEP/NCAR reanalysis data. The uncertainty of the estimate of annual methane emission amounted to 6–12% when considering different dependencies of gas exchange on wind. The scheme which considers the ice cover has a more pronounced influence on methane flux calculations: the uncertainty increased to 50–130%. Parameterization of the relation between ice cover and gas exchange can have a great effect on the calculated methane fluxes and lead to underestimation of its emission from Arctic shelf seas.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"698 - 705"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Sensitivity of the Model of Methane Emission from Arctic Shelf Seas to Gas Exchange Parameterization\",\"authors\":\"V. V. Malakhova, M. V. Kraineva\",\"doi\":\"10.1134/S1024856024700933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>There is considerable uncertainty about the methane emission from Arctic shelf seas. Methane fluxes in this region can be underestimated and play a significant role due to the large volume of gas contained in bottom sediments in the permafrost and gas hydrates. We analyzed the model sensitivity to the parameterization of gas exchange processes on the sea surface based on the numerical modeling of the transport of dissolved methane in Arctic seas. A dissolved methane transport model is included into the basic model of the ocean and sea ice SibCIOM developed at Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences. Methane emissions into the atmosphere were estimated with various parameterization of the gas exchange process in the “water–atmosphere” and “water–ice–atmosphere” systems with NCEP/NCAR reanalysis data. The uncertainty of the estimate of annual methane emission amounted to 6–12% when considering different dependencies of gas exchange on wind. The scheme which considers the ice cover has a more pronounced influence on methane flux calculations: the uncertainty increased to 50–130%. Parameterization of the relation between ice cover and gas exchange can have a great effect on the calculated methane fluxes and lead to underestimation of its emission from Arctic shelf seas.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":\"37 5\",\"pages\":\"698 - 705\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Sensitivity of the Model of Methane Emission from Arctic Shelf Seas to Gas Exchange Parameterization
There is considerable uncertainty about the methane emission from Arctic shelf seas. Methane fluxes in this region can be underestimated and play a significant role due to the large volume of gas contained in bottom sediments in the permafrost and gas hydrates. We analyzed the model sensitivity to the parameterization of gas exchange processes on the sea surface based on the numerical modeling of the transport of dissolved methane in Arctic seas. A dissolved methane transport model is included into the basic model of the ocean and sea ice SibCIOM developed at Institute of Computational Mathematics and Mathematical Geophysics, Siberian Branch, Russian Academy of Sciences. Methane emissions into the atmosphere were estimated with various parameterization of the gas exchange process in the “water–atmosphere” and “water–ice–atmosphere” systems with NCEP/NCAR reanalysis data. The uncertainty of the estimate of annual methane emission amounted to 6–12% when considering different dependencies of gas exchange on wind. The scheme which considers the ice cover has a more pronounced influence on methane flux calculations: the uncertainty increased to 50–130%. Parameterization of the relation between ice cover and gas exchange can have a great effect on the calculated methane fluxes and lead to underestimation of its emission from Arctic shelf seas.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.