V. V. Pol’kin, M. V. Panchenko, S. A. Terpugova, V. P. Shmargunov
{"title":"基于热冲击和光学计数器记录的大气粒子组成中挥发性物质含量的研究","authors":"V. V. Pol’kin, M. V. Panchenko, S. A. Terpugova, V. P. Shmargunov","doi":"10.1134/S1024856024700969","DOIUrl":null,"url":null,"abstract":"<p>A description of the designed automated complex is presented. The results of measurements of the content of species with different volatilities in six particle size ranges from 0.3 to 5 μm with artificial heating from 25°С to and 200°С (with an intermediate point at 100°) are discussed. The particle concentration was recorded by an optical counter. The instrumentation complex was tested in the period 2021–2023 in separate series of round-the-clock observations in different seasons. The photoelectric counter and integrating nephelometer measurements in December 2022 and March 2023 were compared. It has been shown that variations in the relative content of soluble sulfur compounds according to the counter data are in a good agreement with the variability of the values of the parameter of condensation activity. In general, the use of this method is hoped to make it possible to obtain additional information about the seasonal and diurnal variations in aerosol composition in the intermediate range of particle sizes.</p>","PeriodicalId":46751,"journal":{"name":"Atmospheric and Oceanic Optics","volume":"37 5","pages":"719 - 724"},"PeriodicalIF":0.9000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the Content of Volatile Species in the Composition of Atmospheric Particles on the Basis of Thermal Impact and Recording by Optical Counters\",\"authors\":\"V. V. Pol’kin, M. V. Panchenko, S. A. Terpugova, V. P. Shmargunov\",\"doi\":\"10.1134/S1024856024700969\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A description of the designed automated complex is presented. The results of measurements of the content of species with different volatilities in six particle size ranges from 0.3 to 5 μm with artificial heating from 25°С to and 200°С (with an intermediate point at 100°) are discussed. The particle concentration was recorded by an optical counter. The instrumentation complex was tested in the period 2021–2023 in separate series of round-the-clock observations in different seasons. The photoelectric counter and integrating nephelometer measurements in December 2022 and March 2023 were compared. It has been shown that variations in the relative content of soluble sulfur compounds according to the counter data are in a good agreement with the variability of the values of the parameter of condensation activity. In general, the use of this method is hoped to make it possible to obtain additional information about the seasonal and diurnal variations in aerosol composition in the intermediate range of particle sizes.</p>\",\"PeriodicalId\":46751,\"journal\":{\"name\":\"Atmospheric and Oceanic Optics\",\"volume\":\"37 5\",\"pages\":\"719 - 724\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atmospheric and Oceanic Optics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S1024856024700969\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric and Oceanic Optics","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1134/S1024856024700969","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"OPTICS","Score":null,"Total":0}
Study of the Content of Volatile Species in the Composition of Atmospheric Particles on the Basis of Thermal Impact and Recording by Optical Counters
A description of the designed automated complex is presented. The results of measurements of the content of species with different volatilities in six particle size ranges from 0.3 to 5 μm with artificial heating from 25°С to and 200°С (with an intermediate point at 100°) are discussed. The particle concentration was recorded by an optical counter. The instrumentation complex was tested in the period 2021–2023 in separate series of round-the-clock observations in different seasons. The photoelectric counter and integrating nephelometer measurements in December 2022 and March 2023 were compared. It has been shown that variations in the relative content of soluble sulfur compounds according to the counter data are in a good agreement with the variability of the values of the parameter of condensation activity. In general, the use of this method is hoped to make it possible to obtain additional information about the seasonal and diurnal variations in aerosol composition in the intermediate range of particle sizes.
期刊介绍:
Atmospheric and Oceanic Optics is an international peer reviewed journal that presents experimental and theoretical articles relevant to a wide range of problems of atmospheric and oceanic optics, ecology, and climate. The journal coverage includes: scattering and transfer of optical waves, spectroscopy of atmospheric gases, turbulent and nonlinear optical phenomena, adaptive optics, remote (ground-based, airborne, and spaceborne) sensing of the atmosphere and the surface, methods for solving of inverse problems, new equipment for optical investigations, development of computer programs and databases for optical studies. Thematic issues are devoted to the studies of atmospheric ozone, adaptive, nonlinear, and coherent optics, regional climate and environmental monitoring, and other subjects.