降低执行器执行频率的间隔压缩无模型控制算法

IF 2.2 4区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS IET Control Theory and Applications Pub Date : 2024-12-02 DOI:10.1049/cth2.12775
Yitong Zhou, Jing Chang, Weisheng Chen, Hao Dai
{"title":"降低执行器执行频率的间隔压缩无模型控制算法","authors":"Yitong Zhou,&nbsp;Jing Chang,&nbsp;Weisheng Chen,&nbsp;Hao Dai","doi":"10.1049/cth2.12775","DOIUrl":null,"url":null,"abstract":"<p>The complexity of real-world systems poses challenges to model-based control, sparking significant interest in model-free control methods. By depending exclusively on the system's input–output data, the proposed method eliminates the need to construct intricate internal system models. The implementation is straightforward, can satisfy bounded control inputs, and allows for arbitrary adjustment of the actuator's execution frequency. The proposed method establishes an iterative mechanism under the constraint of bounded control inputs. It guarantees the algorithm's convergence by ensuring the continuous narrowing of the control interval. Furthermore, the update conditions within the iterative strategy can adapt to extremely low and continuously adjusting actuator execution frequencies. The bounded stability of the control method is proven using the continuity definition of functions. Its effectiveness and feasibility are validated through simulation and experimental verification.</p>","PeriodicalId":50382,"journal":{"name":"IET Control Theory and Applications","volume":"18 18","pages":"2583-2593"},"PeriodicalIF":2.2000,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12775","citationCount":"0","resultStr":"{\"title\":\"Interval compression-based model-free control algorithm for reducing actuator execution frequency\",\"authors\":\"Yitong Zhou,&nbsp;Jing Chang,&nbsp;Weisheng Chen,&nbsp;Hao Dai\",\"doi\":\"10.1049/cth2.12775\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The complexity of real-world systems poses challenges to model-based control, sparking significant interest in model-free control methods. By depending exclusively on the system's input–output data, the proposed method eliminates the need to construct intricate internal system models. The implementation is straightforward, can satisfy bounded control inputs, and allows for arbitrary adjustment of the actuator's execution frequency. The proposed method establishes an iterative mechanism under the constraint of bounded control inputs. It guarantees the algorithm's convergence by ensuring the continuous narrowing of the control interval. Furthermore, the update conditions within the iterative strategy can adapt to extremely low and continuously adjusting actuator execution frequencies. The bounded stability of the control method is proven using the continuity definition of functions. Its effectiveness and feasibility are validated through simulation and experimental verification.</p>\",\"PeriodicalId\":50382,\"journal\":{\"name\":\"IET Control Theory and Applications\",\"volume\":\"18 18\",\"pages\":\"2583-2593\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-12-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1049/cth2.12775\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IET Control Theory and Applications\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12775\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IET Control Theory and Applications","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/cth2.12775","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

现实世界系统的复杂性对基于模型的控制提出了挑战,激发了人们对无模型控制方法的极大兴趣。通过完全依赖于系统的输入输出数据,该方法消除了构建复杂的内部系统模型的需要。实现是直接的,可以满足有限的控制输入,并允许任意调整执行器的执行频率。该方法建立了有界控制输入约束下的迭代机制。通过保证控制区间的不断缩小来保证算法的收敛性。此外,迭代策略内的更新条件可以适应执行器执行频率极低且不断调整的情况。利用函数的连续性定义证明了控制方法的有界稳定性。通过仿真和实验验证了该方法的有效性和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Interval compression-based model-free control algorithm for reducing actuator execution frequency

The complexity of real-world systems poses challenges to model-based control, sparking significant interest in model-free control methods. By depending exclusively on the system's input–output data, the proposed method eliminates the need to construct intricate internal system models. The implementation is straightforward, can satisfy bounded control inputs, and allows for arbitrary adjustment of the actuator's execution frequency. The proposed method establishes an iterative mechanism under the constraint of bounded control inputs. It guarantees the algorithm's convergence by ensuring the continuous narrowing of the control interval. Furthermore, the update conditions within the iterative strategy can adapt to extremely low and continuously adjusting actuator execution frequencies. The bounded stability of the control method is proven using the continuity definition of functions. Its effectiveness and feasibility are validated through simulation and experimental verification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IET Control Theory and Applications
IET Control Theory and Applications 工程技术-工程:电子与电气
CiteScore
5.70
自引率
7.70%
发文量
167
审稿时长
5.1 months
期刊介绍: IET Control Theory & Applications is devoted to control systems in the broadest sense, covering new theoretical results and the applications of new and established control methods. Among the topics of interest are system modelling, identification and simulation, the analysis and design of control systems (including computer-aided design), and practical implementation. The scope encompasses technological, economic, physiological (biomedical) and other systems, including man-machine interfaces. Most of the papers published deal with original work from industrial and government laboratories and universities, but subject reviews and tutorial expositions of current methods are welcomed. Correspondence discussing published papers is also welcomed. Applications papers need not necessarily involve new theory. Papers which describe new realisations of established methods, or control techniques applied in a novel situation, or practical studies which compare various designs, would be of interest. Of particular value are theoretical papers which discuss the applicability of new work or applications which engender new theoretical applications.
期刊最新文献
Adaptive dynamic programming for trajectory tracking control of a tractor-trailer wheeled mobile robot Design of a novel robust adaptive backstepping controller optimized by snake algorithm for buck-boost converter Optimized design of a pseudo-linearization-based model predictive controller: Direct data-driven approach A motor fault diagnosis using hybrid binary differential evolution algorithm and whale optimization algorithm with storage space VSDRL: A robust and accurate unmanned aerial vehicle autonomous landing scheme
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1