结合动态TOPMODEL和机器学习技术改进径流预测

IF 3 3区 环境科学与生态学 Q2 ENVIRONMENTAL SCIENCES Journal of Flood Risk Management Pub Date : 2024-12-08 DOI:10.1111/jfr3.13050
Pin-Chun Huang
{"title":"结合动态TOPMODEL和机器学习技术改进径流预测","authors":"Pin-Chun Huang","doi":"10.1111/jfr3.13050","DOIUrl":null,"url":null,"abstract":"<p>TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (<i>R</i><sup><i>2</i></sup>) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.</p>","PeriodicalId":49294,"journal":{"name":"Journal of Flood Risk Management","volume":"18 1","pages":""},"PeriodicalIF":3.0000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13050","citationCount":"0","resultStr":"{\"title\":\"Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction\",\"authors\":\"Pin-Chun Huang\",\"doi\":\"10.1111/jfr3.13050\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (<i>R</i><sup><i>2</i></sup>) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.</p>\",\"PeriodicalId\":49294,\"journal\":{\"name\":\"Journal of Flood Risk Management\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":3.0000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jfr3.13050\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Flood Risk Management\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13050\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Flood Risk Management","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jfr3.13050","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

TOPMODEL在水文学研究中得到了广泛的应用,并经过不断的修正,拓宽了其实用性,提高了其模拟精度。为了涵盖空间离散化、扩散波特征、深度相关流速和非饱和区通量估计,通过引入更多的物理参数,建立了一个广义的动态TOPMODEL。本研究旨在利用机器学习技术在动态TOPMODEL框架内评估这些参数的最佳组合,以提高径流预测的准确性并增强模型的可靠性。提出了一种将长短期记忆(LSTM)算法与基于洪水径流条件空间分布变化的拓扑分类相结合的创新训练方法,以提高模型的性能。研究结果表明,在本文采用的三种动态TOPMODEL类型中,该方法的平均相对误差(MRE)最小,为0.106,Pearson相关系数(PC)最高,为0.938,决定系数(R2)最高,为0.906。一个河流流域案例研究的有效实施,展示了与动态TOPMODEL相结合的拟议方法的可行性,并强调了采用建议的培训程序的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combination of dynamic TOPMODEL and machine learning techniques to improve runoff prediction

TOPMODEL has been widely employed in hydrology research, undergoing continuous modifications to broaden its practical applicability and enhance its simulation accuracy. To encompass spatial discretization, diffusion-wave characteristics, depth-dependent flow velocity, and flux estimation in the unsaturated zone, a generalized dynamic TOPMODEL is developed by introducing a greater number of physical parameters. The present study aims to evaluate the optimal combination of these parameters within the dynamic TOPMODEL framework using machine learning techniques to improve the accuracy of runoff predictions and bolster the model's reliability. An innovative training method is suggested to elevate the model's performance by integrating the Long Short-Term Memory (LSTM) algorithm and a topological classification, which relies on the evolving spatial distribution of runoff conditions during floods. The research findings show that the proposed methodology achieves the lowest mean relative error (MRE) at 0.106, the highest Pearson correlation coefficient (PC) at 0.938, and the highest coefficient of determination (R2) at 0.906 among the three dynamic TOPMODEL types adopted in this study. The effective implementation of a case study in a river basin showcases the feasibility of the proposed method in conjunction with dynamic TOPMODEL and underscores the importance of employing the suggested training procedure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Flood Risk Management
Journal of Flood Risk Management ENVIRONMENTAL SCIENCES-WATER RESOURCES
CiteScore
8.40
自引率
7.30%
发文量
93
审稿时长
12 months
期刊介绍: Journal of Flood Risk Management provides an international platform for knowledge sharing in all areas related to flood risk. Its explicit aim is to disseminate ideas across the range of disciplines where flood related research is carried out and it provides content ranging from leading edge academic papers to applied content with the practitioner in mind. Readers and authors come from a wide background and include hydrologists, meteorologists, geographers, geomorphologists, conservationists, civil engineers, social scientists, policy makers, insurers and practitioners. They share an interest in managing the complex interactions between the many skills and disciplines that underpin the management of flood risk across the world.
期刊最新文献
Toward Sustainable Flood Resilience: Assessing Efficacy of Paddy Field Dams to Reduce Floods in Jakarta Uncrewed Aerial Vehicle-Based Multispectral Imagery for River Soil Monitoring Putting the English Flooding of 2019–2021 in the Context of Antecedent Conditions Bridge Collapse in Mutsu, Aomori Prefecture, Japan in 2021 Attribution of Flood Forecasting Errors From a Multi-Model Perspective in Milan Urbanized River Basins
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1