探索藻类生物量在生产营养保健化合物方面的巨大潜力及其应用

IF 6.2 3区 工程技术 Q1 ENGINEERING, CHEMICAL ChemBioEng Reviews Pub Date : 2024-11-07 DOI:10.1002/cben.202400018
Muhammad Islam, Irfan Ahmad, Hafiz Abdullah Shakir, Muhammad Khan, Marcelo Franco, Muhammad Irfan
{"title":"探索藻类生物量在生产营养保健化合物方面的巨大潜力及其应用","authors":"Muhammad Islam,&nbsp;Irfan Ahmad,&nbsp;Hafiz Abdullah Shakir,&nbsp;Muhammad Khan,&nbsp;Marcelo Franco,&nbsp;Muhammad Irfan","doi":"10.1002/cben.202400018","DOIUrl":null,"url":null,"abstract":"<p>The world population is expected to increase up to 9.6 billion by 2050. This triggers the demand for food security and its nutritional value. Despite the advancements in the field of medicine, current research focuses on investigating natural-origin functional foods with tremendous health-supporting properties. It includes various natural sources such as animals, plants, algae, fungi, and bacteria. The Algae group is still under investigation to find the best alternative to other previously explored sources. Algae possess remarkable potential for synthesizing natural metabolites, including primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (Flavonoids, bromophenols, phenolic compounds, and polyphenols). These bioactive compounds have enormous anticancer, antimicrobial, and neuroprotection applications. This provokes researcher interest in exploring algae strains to optimize their metabolite production to utilize them as a functional food. Metabolomics techniques can be utilized to investigate biological samples. It will create new ways to explore algae strains that have not yet been investigated. A closed pond cultivation system is attractive to enhance algae growth in highly controlled conditions. This review emphasizes algae metabolism, cultivation methods, metabolomics analysis, genetic engineering, and advanced genome editing tools such as the CRISPR CAS9 system, which can be utilized to manipulate the algae genome for increased production.</p>","PeriodicalId":48623,"journal":{"name":"ChemBioEng Reviews","volume":"11 6","pages":""},"PeriodicalIF":6.2000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Remarkable Potential of Algal Biomass for the Production of Nutraceutical Compounds and Their Applications\",\"authors\":\"Muhammad Islam,&nbsp;Irfan Ahmad,&nbsp;Hafiz Abdullah Shakir,&nbsp;Muhammad Khan,&nbsp;Marcelo Franco,&nbsp;Muhammad Irfan\",\"doi\":\"10.1002/cben.202400018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The world population is expected to increase up to 9.6 billion by 2050. This triggers the demand for food security and its nutritional value. Despite the advancements in the field of medicine, current research focuses on investigating natural-origin functional foods with tremendous health-supporting properties. It includes various natural sources such as animals, plants, algae, fungi, and bacteria. The Algae group is still under investigation to find the best alternative to other previously explored sources. Algae possess remarkable potential for synthesizing natural metabolites, including primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (Flavonoids, bromophenols, phenolic compounds, and polyphenols). These bioactive compounds have enormous anticancer, antimicrobial, and neuroprotection applications. This provokes researcher interest in exploring algae strains to optimize their metabolite production to utilize them as a functional food. Metabolomics techniques can be utilized to investigate biological samples. It will create new ways to explore algae strains that have not yet been investigated. A closed pond cultivation system is attractive to enhance algae growth in highly controlled conditions. This review emphasizes algae metabolism, cultivation methods, metabolomics analysis, genetic engineering, and advanced genome editing tools such as the CRISPR CAS9 system, which can be utilized to manipulate the algae genome for increased production.</p>\",\"PeriodicalId\":48623,\"journal\":{\"name\":\"ChemBioEng Reviews\",\"volume\":\"11 6\",\"pages\":\"\"},\"PeriodicalIF\":6.2000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ChemBioEng Reviews\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400018\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemBioEng Reviews","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cben.202400018","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

到2050年,世界人口预计将增加到96亿。这就引发了对粮食安全和其营养价值的需求。尽管医学领域取得了进步,但目前的研究重点是研究具有巨大健康支持特性的天然功能性食品。它包括各种自然资源,如动物、植物、藻类、真菌和细菌。藻类小组仍在调查中,以寻找其他先前勘探的资源的最佳替代方案。藻类在合成天然代谢物方面具有显著的潜力,包括初级代谢物(多糖、蛋白质和脂类)和次级代谢物(类黄酮、溴酚、酚类化合物和多酚类)。这些生物活性化合物具有巨大的抗癌、抗菌和神经保护应用。这引起了研究人员对探索藻类菌株以优化其代谢物生产以利用其作为功能性食品的兴趣。代谢组学技术可用于研究生物样品。它将为探索尚未被研究过的藻类菌株创造新的方法。封闭池塘养殖系统在高度控制的条件下促进藻类生长是有吸引力的。本文重点介绍了藻类的代谢、培养方法、代谢组学分析、基因工程和先进的基因组编辑工具,如CRISPR CAS9系统,这些工具可以用来操纵藻类基因组以提高产量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Exploring the Remarkable Potential of Algal Biomass for the Production of Nutraceutical Compounds and Their Applications

The world population is expected to increase up to 9.6 billion by 2050. This triggers the demand for food security and its nutritional value. Despite the advancements in the field of medicine, current research focuses on investigating natural-origin functional foods with tremendous health-supporting properties. It includes various natural sources such as animals, plants, algae, fungi, and bacteria. The Algae group is still under investigation to find the best alternative to other previously explored sources. Algae possess remarkable potential for synthesizing natural metabolites, including primary metabolites (polysaccharides, proteins, and lipids) and secondary metabolites (Flavonoids, bromophenols, phenolic compounds, and polyphenols). These bioactive compounds have enormous anticancer, antimicrobial, and neuroprotection applications. This provokes researcher interest in exploring algae strains to optimize their metabolite production to utilize them as a functional food. Metabolomics techniques can be utilized to investigate biological samples. It will create new ways to explore algae strains that have not yet been investigated. A closed pond cultivation system is attractive to enhance algae growth in highly controlled conditions. This review emphasizes algae metabolism, cultivation methods, metabolomics analysis, genetic engineering, and advanced genome editing tools such as the CRISPR CAS9 system, which can be utilized to manipulate the algae genome for increased production.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ChemBioEng Reviews
ChemBioEng Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
7.90
自引率
2.10%
发文量
45
期刊介绍: Launched in 2014, ChemBioEng Reviews is aimed to become a top-ranking journal publishing review articles offering information on significant developments and provide fundamental knowledge of important topics in the fields of chemical engineering and biotechnology. The journal supports academics and researchers in need for concise, easy to access information on specific topics. The articles cover all fields of (bio-) chemical engineering and technology, e.g.,
期刊最新文献
Cover Picture: ChemBioEng Reviews 1/2025 Masthead: ChemBioEng Reviews 1/2025 Table of Contents: ChemBioEng Reviews 1/2025 Critical Review of Corrugation in Tubular Heat Exchangers: Focus on Thermal and Economical Aspects Technological Advancement in Product Valorization of Agricultural Wastes Treated with Deep Eutectic Solvents: A Review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1