识别与热带气旋早期增强有关的三维辐射模式

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-12-08 DOI:10.1029/2024MS004401
Frederick Iat-Hin Tam, Tom Beucler, James H. Ruppert Jr.
{"title":"识别与热带气旋早期增强有关的三维辐射模式","authors":"Frederick Iat-Hin Tam,&nbsp;Tom Beucler,&nbsp;James H. Ruppert Jr.","doi":"10.1029/2024MS004401","DOIUrl":null,"url":null,"abstract":"<p>Cloud radiative feedback impacts early tropical cyclone (TC) intensification, but limitations in existing diagnostic frameworks make them unsuitable for studying asymmetric or transient radiative heating. We propose a linear Variational Encoder-Decoder (VED) framework to learn the hidden relationship between radiative anomalies and the surface intensification of realistic simulated TCs. The uncertainty of the VED model identifies periods when radiation has more importance for intensification. A close examination of the radiative pattern extracted by the VED model from a 20-member ensemble simulation on Typhoon Haiyan shows that longwave forcing from inner core deep convection and shallow clouds downshear contribute to intensification, with deep convection in the downshear-left quadrant having the most impact overall on the intensification of that TC. Our work demonstrates that machine learning can aid the discovery of thermodynamic-kinematic relationships without relying on axisymmetric or deterministic assumptions, paving the way for the objective discovery of processes leading to TC intensification in realistic conditions.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004401","citationCount":"0","resultStr":"{\"title\":\"Identifying Three-Dimensional Radiative Patterns Associated With Early Tropical Cyclone Intensification\",\"authors\":\"Frederick Iat-Hin Tam,&nbsp;Tom Beucler,&nbsp;James H. Ruppert Jr.\",\"doi\":\"10.1029/2024MS004401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cloud radiative feedback impacts early tropical cyclone (TC) intensification, but limitations in existing diagnostic frameworks make them unsuitable for studying asymmetric or transient radiative heating. We propose a linear Variational Encoder-Decoder (VED) framework to learn the hidden relationship between radiative anomalies and the surface intensification of realistic simulated TCs. The uncertainty of the VED model identifies periods when radiation has more importance for intensification. A close examination of the radiative pattern extracted by the VED model from a 20-member ensemble simulation on Typhoon Haiyan shows that longwave forcing from inner core deep convection and shallow clouds downshear contribute to intensification, with deep convection in the downshear-left quadrant having the most impact overall on the intensification of that TC. Our work demonstrates that machine learning can aid the discovery of thermodynamic-kinematic relationships without relying on axisymmetric or deterministic assumptions, paving the way for the objective discovery of processes leading to TC intensification in realistic conditions.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004401\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004401\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004401","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

云辐射反馈影响早期热带气旋(TC)增强,但现有诊断框架的局限性使其不适合研究不对称或瞬态辐射加热。我们提出了一个线性变分编码器-解码器(VED)框架来学习真实模拟tc的辐射异常与表面强化之间的隐藏关系。VED模型的不确定性确定了辐射对增强更重要的时期。对台风“海燕”20元集合模拟中VED模式提取的辐射谱图进行了深入分析,结果表明,来自内核深层对流和浅云下切变的长波强迫有助于增强,其中下切变左象限的深层对流对台风“海燕”的增强影响最大。我们的工作表明,机器学习可以帮助发现热力学-运动学关系,而不依赖于轴对称或确定性假设,为客观发现现实条件下导致TC强化的过程铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Identifying Three-Dimensional Radiative Patterns Associated With Early Tropical Cyclone Intensification

Cloud radiative feedback impacts early tropical cyclone (TC) intensification, but limitations in existing diagnostic frameworks make them unsuitable for studying asymmetric or transient radiative heating. We propose a linear Variational Encoder-Decoder (VED) framework to learn the hidden relationship between radiative anomalies and the surface intensification of realistic simulated TCs. The uncertainty of the VED model identifies periods when radiation has more importance for intensification. A close examination of the radiative pattern extracted by the VED model from a 20-member ensemble simulation on Typhoon Haiyan shows that longwave forcing from inner core deep convection and shallow clouds downshear contribute to intensification, with deep convection in the downshear-left quadrant having the most impact overall on the intensification of that TC. Our work demonstrates that machine learning can aid the discovery of thermodynamic-kinematic relationships without relying on axisymmetric or deterministic assumptions, paving the way for the objective discovery of processes leading to TC intensification in realistic conditions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
ELM-Wet: Inclusion of a Wet-Landunit With Sub-Grid Representation of Eco-Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM) LEMDA: A Lagrangian-Eulerian Multiscale Data Assimilation Framework Issue Information Development of a Data-Driven Lightning Scheme for Implementation in Global Climate Models Energetically Consistent Eddy-Diffusivity Mass-Flux Convective Schemes: 1. Theory and Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1