{"title":"含极化体光栅层的高效串联太阳能聚光器的蒙特卡罗建模","authors":"Ramin Zohrabi, Sahar Ehsani-Tabar, Amir Hosein Esmaeili, Shadi Daghighazar, Kiyanoush Goudarzi","doi":"10.1002/adpr.202400054","DOIUrl":null,"url":null,"abstract":"<p>This article develops a Monte Carlo model to optimize a newly introduced tandem luminescent solar concentrator. This innovative structure comprises two parallel transparent polymeric waveguides separated by an air gap. The first waveguide, which is exposed to sunlight, contains fluorophores and performs as a traditional luminescent solar concentrator. In contrast, the second waveguide is equipped with an inner polarization volume grating layer, strategically placed to couple the emitted photons within the escape cone, directing them into the second waveguide and preventing reabsorption. The finite difference time domain method is employed to optimize the performance of this grating. The results show a significant improvement in external photon efficiency compared to the conventional luminescent solar concentrator.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400054","citationCount":"0","resultStr":"{\"title\":\"Monte Carlo Modeling of a High-Efficiency Tandem Luminescent Solar Concentrator Containing a Polarization Volume Grating Layer\",\"authors\":\"Ramin Zohrabi, Sahar Ehsani-Tabar, Amir Hosein Esmaeili, Shadi Daghighazar, Kiyanoush Goudarzi\",\"doi\":\"10.1002/adpr.202400054\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article develops a Monte Carlo model to optimize a newly introduced tandem luminescent solar concentrator. This innovative structure comprises two parallel transparent polymeric waveguides separated by an air gap. The first waveguide, which is exposed to sunlight, contains fluorophores and performs as a traditional luminescent solar concentrator. In contrast, the second waveguide is equipped with an inner polarization volume grating layer, strategically placed to couple the emitted photons within the escape cone, directing them into the second waveguide and preventing reabsorption. The finite difference time domain method is employed to optimize the performance of this grating. The results show a significant improvement in external photon efficiency compared to the conventional luminescent solar concentrator.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400054\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400054\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400054","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Monte Carlo Modeling of a High-Efficiency Tandem Luminescent Solar Concentrator Containing a Polarization Volume Grating Layer
This article develops a Monte Carlo model to optimize a newly introduced tandem luminescent solar concentrator. This innovative structure comprises two parallel transparent polymeric waveguides separated by an air gap. The first waveguide, which is exposed to sunlight, contains fluorophores and performs as a traditional luminescent solar concentrator. In contrast, the second waveguide is equipped with an inner polarization volume grating layer, strategically placed to couple the emitted photons within the escape cone, directing them into the second waveguide and preventing reabsorption. The finite difference time domain method is employed to optimize the performance of this grating. The results show a significant improvement in external photon efficiency compared to the conventional luminescent solar concentrator.