用于三维 (3D) 元件的可铣 BN-AlN 陶瓷激光直接成型技术

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-07 DOI:10.1002/adem.202401271
Selina Raumel, Xiao Xiao, Sebastian Bengsch, Marc C. Wurz
{"title":"用于三维 (3D) 元件的可铣 BN-AlN 陶瓷激光直接成型技术","authors":"Selina Raumel,&nbsp;Xiao Xiao,&nbsp;Sebastian Bengsch,&nbsp;Marc C. Wurz","doi":"10.1002/adem.202401271","DOIUrl":null,"url":null,"abstract":"<p>This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 23","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401271","citationCount":"0","resultStr":"{\"title\":\"Laser Direct Structuring of Millable BN-AlN Ceramic for Three-Dimensional (3D) Components\",\"authors\":\"Selina Raumel,&nbsp;Xiao Xiao,&nbsp;Sebastian Bengsch,&nbsp;Marc C. Wurz\",\"doi\":\"10.1002/adem.202401271\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 23\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adem.202401271\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401271\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401271","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究介绍了一种利用激光直接结构(LDS)对BN-AlN复合陶瓷(一种可磨耐高温材料)直接金属化的新工艺。例如,LDS用于模制互连设备(mid),将机械和电子功能集成到单个3D结构中。传统上,mid依赖于聚合物,但电子产品中日益增长的热需求正将焦点转移到BN-AlN等陶瓷基板上,这种基板具有卓越的热稳定性和机械强度。本文通过对激光激活和化学镀铜的参数研究,将电子基础设施应用于精加工BN-AlN 3D部件,随后开发了顺序铜镍金(CuNiAu)沉积工艺。激光结构在表面显示出细小的单质铝颗粒,直接催化化学镀铜过程中的金属还原。发现镀铜过程的时间和温度对镀层的核尺寸和层厚有影响。氯化钯处理,以及在CuNiAu层沉积过程中额外的蚀刻步骤,显示出有希望的结果。金属化BN-AlN基板具有粘附性、接触可靠性、电阻率和热稳定性。研究结果证明了该工艺适用于高温应用,突出了其推进电子系统集成的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Laser Direct Structuring of Millable BN-AlN Ceramic for Three-Dimensional (3D) Components

This research introduces a novel process for the direct metallization of the composite ceramic BN-AlN, a millable, high-temperature resistant material, using laser direct structuring (LDS). LDS is, for example, used for molded interconnect devices (MIDs), to integrate mechanical and electronic functions into a single 3D structure. Traditionally, MIDs have relied on polymers, but increasing thermal demands in electronics are shifting focus toward ceramic substrates like BN-AlN, which offer superior thermal stability and mechanical strength. Herein, electronic infrastructures are applied onto milled BN-AlN 3D components through a parameter study on laser activation and electroless copper deposition, followed by the development of a sequential copper–nickel–gold (CuNiAu) deposition process. The laser structuring reveals small grains of elemental aluminum on the surface, which directly catalyzes metal reduction in the electroless copper deposition. The duration and temperature of the copper electroplating process are found to influence the nuclei size and layer thickness. A palladium chloride treatment, as well as additional etching steps during the CuNiAu layer deposition, shows promising results. The metallized BN-AlN substrates are characterized for adhesion, contact reliability, resistivity, and thermal stability. The findings demonstrate the process's suitability for high-temperature applications, highlighting its potential for advancing electronic system integration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1