通过细分方法减少聚合物卷曲变形和热影响以提高数字光处理印刷精度

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-08 DOI:10.1002/adem.202401674
Sirawit Pruksawan, Yi Ting Chong, Yang Zhao, Vinod Kumar Sivaraja, Andrew Chun Yong Ngo, Peng Jin, FuKe Wang
{"title":"通过细分方法减少聚合物卷曲变形和热影响以提高数字光处理印刷精度","authors":"Sirawit Pruksawan,&nbsp;Yi Ting Chong,&nbsp;Yang Zhao,&nbsp;Vinod Kumar Sivaraja,&nbsp;Andrew Chun Yong Ngo,&nbsp;Peng Jin,&nbsp;FuKe Wang","doi":"10.1002/adem.202401674","DOIUrl":null,"url":null,"abstract":"<p>Curl distortion has been a persistent challenge for vat photopolymerization-based printing technology such as digital light processing (DLP), leading to structural deformation and print failures. This study presents a new approach to mitigate curling distortion and heat effects during DLP printing by dividing the printing layer image into sequential subimages, using a breadth-first search algorithm. The progressive curing process, resembling a ripple pattern, results in a significant improvement in printing accuracy. The deviation is reduced tenfold when the layer image is divided into subimages with 10 pixels for a 32 mm diameter disc. Additionally, subdivision strategy helps to reduce the heat effect during photopolymerization, as monitored in situ by a long-wave infrared camera. The successful reduction of residual stress using the subdivision strategy results in a 75% improvement in the mechanical performance of the printed products. The simple adoption of subdivision strategy in practical 3D printing applications is also demonstrated. For solid 3D printing structures, introducing intervals within the solid printing layers—such as using a grid structure instead of a fully solid one, can help to reduce curling and heat effects, thereby improving 3D printing accuracy.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Minimizing Polymer Curl Distortion and Heat Impact to Improve Digital Light Processing Printing Accuracy via Subdivision Method\",\"authors\":\"Sirawit Pruksawan,&nbsp;Yi Ting Chong,&nbsp;Yang Zhao,&nbsp;Vinod Kumar Sivaraja,&nbsp;Andrew Chun Yong Ngo,&nbsp;Peng Jin,&nbsp;FuKe Wang\",\"doi\":\"10.1002/adem.202401674\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Curl distortion has been a persistent challenge for vat photopolymerization-based printing technology such as digital light processing (DLP), leading to structural deformation and print failures. This study presents a new approach to mitigate curling distortion and heat effects during DLP printing by dividing the printing layer image into sequential subimages, using a breadth-first search algorithm. The progressive curing process, resembling a ripple pattern, results in a significant improvement in printing accuracy. The deviation is reduced tenfold when the layer image is divided into subimages with 10 pixels for a 32 mm diameter disc. Additionally, subdivision strategy helps to reduce the heat effect during photopolymerization, as monitored in situ by a long-wave infrared camera. The successful reduction of residual stress using the subdivision strategy results in a 75% improvement in the mechanical performance of the printed products. The simple adoption of subdivision strategy in practical 3D printing applications is also demonstrated. For solid 3D printing structures, introducing intervals within the solid printing layers—such as using a grid structure instead of a fully solid one, can help to reduce curling and heat effects, thereby improving 3D printing accuracy.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401674\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401674","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卷曲变形一直是基于还原光聚合的印刷技术(如数字光处理(DLP))的一个持续挑战,导致结构变形和打印失败。本研究提出了一种新的方法,通过使用宽度优先搜索算法将打印层图像划分为连续子图像,以减轻DLP打印过程中的卷曲变形和热效应。渐进固化过程,类似于波纹图案,导致印刷精度显著提高。对于直径为32mm的光盘,将层图像分成10个像素的子图像时,偏差减少了10倍。此外,细分策略有助于减少光聚合过程中的热效应,这可以通过长波红外摄像机进行现场监测。使用细分策略成功地减少了残余应力,导致印刷产品的机械性能提高了75%。在实际的3D打印应用中,简单地采用细分策略。对于实体3D打印结构,在实体打印层中引入间隔,例如使用网格结构而不是全实体结构,可以帮助减少卷曲和热效应,从而提高3D打印精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Minimizing Polymer Curl Distortion and Heat Impact to Improve Digital Light Processing Printing Accuracy via Subdivision Method

Curl distortion has been a persistent challenge for vat photopolymerization-based printing technology such as digital light processing (DLP), leading to structural deformation and print failures. This study presents a new approach to mitigate curling distortion and heat effects during DLP printing by dividing the printing layer image into sequential subimages, using a breadth-first search algorithm. The progressive curing process, resembling a ripple pattern, results in a significant improvement in printing accuracy. The deviation is reduced tenfold when the layer image is divided into subimages with 10 pixels for a 32 mm diameter disc. Additionally, subdivision strategy helps to reduce the heat effect during photopolymerization, as monitored in situ by a long-wave infrared camera. The successful reduction of residual stress using the subdivision strategy results in a 75% improvement in the mechanical performance of the printed products. The simple adoption of subdivision strategy in practical 3D printing applications is also demonstrated. For solid 3D printing structures, introducing intervals within the solid printing layers—such as using a grid structure instead of a fully solid one, can help to reduce curling and heat effects, thereby improving 3D printing accuracy.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1