Andrew F. Thompson, Lilian A. Dove, Ellie Flint, Leo Lacour, Philip Boyd
{"title":"南大洋多个物理粒子注入泵之间的相互作用","authors":"Andrew F. Thompson, Lilian A. Dove, Ellie Flint, Leo Lacour, Philip Boyd","doi":"10.1029/2024GB008122","DOIUrl":null,"url":null,"abstract":"<p>Contributions to the biological pump that arise from the physical circulation are referred to as physical particle injection pumps. A synthesized view of how these physical pumps interact with each other and other components of the biological pump does not yet exist. Here, observations from a quasi-Lagrangian float and an ocean glider, deployed in the Southern Ocean's Subantarctic Zone for one month during the spring bloom, offer insight into daily-to-monthly fluctuations in the mixed layer pump (MLP) and the eddy subduction pump (ESP). Estimated independently, each mechanism contributes intermittent export fluxes of roughly several hundred milligrams of particulate organic carbon (POC) per square meter per day. The glider-based estimates indicate sustained weekly periods of MLP export fluxes across the base of the mixed layer with a magnitude of <span></span><math>\n <semantics>\n <mrow>\n <mo>∼</mo>\n <mn>450</mn>\n <mo>±</mo>\n <mn>110</mn>\n </mrow>\n <annotation> ${\\sim} 450\\pm 110$</annotation>\n </semantics></math> mg POC <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>day</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{day}}^{-1}$</annotation>\n </semantics></math>. Potential export fluxes from the ESP, based on a mixed layer instability scaling, occasionally exceed 400 mg POC <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>m</mi>\n <mrow>\n <mo>−</mo>\n <mn>2</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\mathrm{m}}^{-2}$</annotation>\n </semantics></math> <span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mtext>day</mtext>\n <mrow>\n <mo>−</mo>\n <mn>1</mn>\n </mrow>\n </msup>\n </mrow>\n <annotation> ${\\text{day}}^{-1}$</annotation>\n </semantics></math>, with export elevated due to both strong inferred vertical velocities and enhanced isopycnal slopes. Significant export fluxes from the ESP are localized to the edges of mesoscale eddies and to fronts, whereas the MLP acts more broadly due to the larger scales of atmospheric forcing. Regimes occur when MLP and ESP export fluxes can have either the same or opposite sign. Simple summation of fluxes from existing parameterizations of the two pumps likely misrepresents the total physical carbon flux. Insights into how mesoscale stirring and submesoscale velocities set POC vertical structure is a key target to reduce uncertainty in global carbon export fluxes.</p>","PeriodicalId":12729,"journal":{"name":"Global Biogeochemical Cycles","volume":"38 12","pages":""},"PeriodicalIF":5.4000,"publicationDate":"2024-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008122","citationCount":"0","resultStr":"{\"title\":\"Interactions Between Multiple Physical Particle Injection Pumps in the Southern Ocean\",\"authors\":\"Andrew F. Thompson, Lilian A. Dove, Ellie Flint, Leo Lacour, Philip Boyd\",\"doi\":\"10.1029/2024GB008122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Contributions to the biological pump that arise from the physical circulation are referred to as physical particle injection pumps. A synthesized view of how these physical pumps interact with each other and other components of the biological pump does not yet exist. Here, observations from a quasi-Lagrangian float and an ocean glider, deployed in the Southern Ocean's Subantarctic Zone for one month during the spring bloom, offer insight into daily-to-monthly fluctuations in the mixed layer pump (MLP) and the eddy subduction pump (ESP). Estimated independently, each mechanism contributes intermittent export fluxes of roughly several hundred milligrams of particulate organic carbon (POC) per square meter per day. The glider-based estimates indicate sustained weekly periods of MLP export fluxes across the base of the mixed layer with a magnitude of <span></span><math>\\n <semantics>\\n <mrow>\\n <mo>∼</mo>\\n <mn>450</mn>\\n <mo>±</mo>\\n <mn>110</mn>\\n </mrow>\\n <annotation> ${\\\\sim} 450\\\\pm 110$</annotation>\\n </semantics></math> mg POC <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>day</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{day}}^{-1}$</annotation>\\n </semantics></math>. Potential export fluxes from the ESP, based on a mixed layer instability scaling, occasionally exceed 400 mg POC <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>m</mi>\\n <mrow>\\n <mo>−</mo>\\n <mn>2</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\mathrm{m}}^{-2}$</annotation>\\n </semantics></math> <span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mtext>day</mtext>\\n <mrow>\\n <mo>−</mo>\\n <mn>1</mn>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation> ${\\\\text{day}}^{-1}$</annotation>\\n </semantics></math>, with export elevated due to both strong inferred vertical velocities and enhanced isopycnal slopes. Significant export fluxes from the ESP are localized to the edges of mesoscale eddies and to fronts, whereas the MLP acts more broadly due to the larger scales of atmospheric forcing. Regimes occur when MLP and ESP export fluxes can have either the same or opposite sign. Simple summation of fluxes from existing parameterizations of the two pumps likely misrepresents the total physical carbon flux. Insights into how mesoscale stirring and submesoscale velocities set POC vertical structure is a key target to reduce uncertainty in global carbon export fluxes.</p>\",\"PeriodicalId\":12729,\"journal\":{\"name\":\"Global Biogeochemical Cycles\",\"volume\":\"38 12\",\"pages\":\"\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GB008122\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Global Biogeochemical Cycles\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008122\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Biogeochemical Cycles","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GB008122","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Interactions Between Multiple Physical Particle Injection Pumps in the Southern Ocean
Contributions to the biological pump that arise from the physical circulation are referred to as physical particle injection pumps. A synthesized view of how these physical pumps interact with each other and other components of the biological pump does not yet exist. Here, observations from a quasi-Lagrangian float and an ocean glider, deployed in the Southern Ocean's Subantarctic Zone for one month during the spring bloom, offer insight into daily-to-monthly fluctuations in the mixed layer pump (MLP) and the eddy subduction pump (ESP). Estimated independently, each mechanism contributes intermittent export fluxes of roughly several hundred milligrams of particulate organic carbon (POC) per square meter per day. The glider-based estimates indicate sustained weekly periods of MLP export fluxes across the base of the mixed layer with a magnitude of mg POC . Potential export fluxes from the ESP, based on a mixed layer instability scaling, occasionally exceed 400 mg POC , with export elevated due to both strong inferred vertical velocities and enhanced isopycnal slopes. Significant export fluxes from the ESP are localized to the edges of mesoscale eddies and to fronts, whereas the MLP acts more broadly due to the larger scales of atmospheric forcing. Regimes occur when MLP and ESP export fluxes can have either the same or opposite sign. Simple summation of fluxes from existing parameterizations of the two pumps likely misrepresents the total physical carbon flux. Insights into how mesoscale stirring and submesoscale velocities set POC vertical structure is a key target to reduce uncertainty in global carbon export fluxes.
期刊介绍:
Global Biogeochemical Cycles (GBC) features research on regional to global biogeochemical interactions, as well as more local studies that demonstrate fundamental implications for biogeochemical processing at regional or global scales. Published papers draw on a wide array of methods and knowledge and extend in time from the deep geologic past to recent historical and potential future interactions. This broad scope includes studies that elucidate human activities as interactive components of biogeochemical cycles and physical Earth Systems including climate. Authors are required to make their work accessible to a broad interdisciplinary range of scientists.