Abhishek Lodh, Ashish Routray, Devajyoti Dutta, Vivek Singh, John. P. George
{"title":"基于简化扩展卡尔曼滤波的INSAT-3D地表温度同化系统对印度地面场预报的影响","authors":"Abhishek Lodh, Ashish Routray, Devajyoti Dutta, Vivek Singh, John. P. George","doi":"10.1002/met.70019","DOIUrl":null,"url":null,"abstract":"<p>The land surface temperature (LT) is a crucial variable that governs the energy and radiation budget of the earth's atmosphere and influences land-atmosphere interactions. The LT plays a crucial role mainly in the short-range forecast of a numerical weather prediction (NWP) model. The primary research goal in this research work undertaken is to assess the impact of assimilation of LT data from the Indian satellite (INSAT-3D) into the NCMRWF global NWP model (NCUM) through a simplified Extended Kalman Filter (sEKF) land data assimilation system (LDAS), particularly important as there are few screen-level observations over the region. A dedicated stand-alone pre-processing system has been designed to prepare LT observations in a compatible format for the land surface assimilation system. The approach for LT data assimilation from the INSAT-3D satellite reduces the uncertainty associated with the initial state of LT analysis while simultaneously improving the accuracy of forecasts of near surface atmospheric variables. An observing system experiment (OSE) was carried out during both the summer (May) and winter (February) months by assimilating the INSAT-3D LT data in a coupled land-atmosphere analysis-forecast system. The results obtained from the OSE demonstrate that the use of INSAT-3D LT data improves the forecast skill of both maximum and minimum temperature over India, particularly in areas characterized by higher LT variability. The improvement is pronounced in forecasts of maximum (minimum) temperature during “Boreal” summer (“Boreal” winter) season. The verification scores also indicate that the incorporation of INSAT LT data substantially improves the NCUM model's forecast performance. By assimilating LT, the mean error of maximum and minimum temperature forecasts in India was decreased, accompanied by enhanced forecast accuracy within a time frame of approximately 24 h. The scores for the verification measures, specifically the Probability of Detection (POD), demonstrate a ~15% improvement in both the forecasts for maximum and minimum temperatures. This improves the temperature prediction as well as the ability to forecast intense weather episodes like cold spells and heat waves.</p>","PeriodicalId":49825,"journal":{"name":"Meteorological Applications","volume":"31 6","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70019","citationCount":"0","resultStr":"{\"title\":\"Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India\",\"authors\":\"Abhishek Lodh, Ashish Routray, Devajyoti Dutta, Vivek Singh, John. P. George\",\"doi\":\"10.1002/met.70019\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The land surface temperature (LT) is a crucial variable that governs the energy and radiation budget of the earth's atmosphere and influences land-atmosphere interactions. The LT plays a crucial role mainly in the short-range forecast of a numerical weather prediction (NWP) model. The primary research goal in this research work undertaken is to assess the impact of assimilation of LT data from the Indian satellite (INSAT-3D) into the NCMRWF global NWP model (NCUM) through a simplified Extended Kalman Filter (sEKF) land data assimilation system (LDAS), particularly important as there are few screen-level observations over the region. A dedicated stand-alone pre-processing system has been designed to prepare LT observations in a compatible format for the land surface assimilation system. The approach for LT data assimilation from the INSAT-3D satellite reduces the uncertainty associated with the initial state of LT analysis while simultaneously improving the accuracy of forecasts of near surface atmospheric variables. An observing system experiment (OSE) was carried out during both the summer (May) and winter (February) months by assimilating the INSAT-3D LT data in a coupled land-atmosphere analysis-forecast system. The results obtained from the OSE demonstrate that the use of INSAT-3D LT data improves the forecast skill of both maximum and minimum temperature over India, particularly in areas characterized by higher LT variability. The improvement is pronounced in forecasts of maximum (minimum) temperature during “Boreal” summer (“Boreal” winter) season. The verification scores also indicate that the incorporation of INSAT LT data substantially improves the NCUM model's forecast performance. By assimilating LT, the mean error of maximum and minimum temperature forecasts in India was decreased, accompanied by enhanced forecast accuracy within a time frame of approximately 24 h. The scores for the verification measures, specifically the Probability of Detection (POD), demonstrate a ~15% improvement in both the forecasts for maximum and minimum temperatures. This improves the temperature prediction as well as the ability to forecast intense weather episodes like cold spells and heat waves.</p>\",\"PeriodicalId\":49825,\"journal\":{\"name\":\"Meteorological Applications\",\"volume\":\"31 6\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-12-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/met.70019\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Meteorological Applications\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/met.70019\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Meteorological Applications","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/met.70019","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
Impact of INSAT-3D land surface temperature assimilation via simplified extended Kalman filter-based land data assimilation system on forecasting of surface fields over India
The land surface temperature (LT) is a crucial variable that governs the energy and radiation budget of the earth's atmosphere and influences land-atmosphere interactions. The LT plays a crucial role mainly in the short-range forecast of a numerical weather prediction (NWP) model. The primary research goal in this research work undertaken is to assess the impact of assimilation of LT data from the Indian satellite (INSAT-3D) into the NCMRWF global NWP model (NCUM) through a simplified Extended Kalman Filter (sEKF) land data assimilation system (LDAS), particularly important as there are few screen-level observations over the region. A dedicated stand-alone pre-processing system has been designed to prepare LT observations in a compatible format for the land surface assimilation system. The approach for LT data assimilation from the INSAT-3D satellite reduces the uncertainty associated with the initial state of LT analysis while simultaneously improving the accuracy of forecasts of near surface atmospheric variables. An observing system experiment (OSE) was carried out during both the summer (May) and winter (February) months by assimilating the INSAT-3D LT data in a coupled land-atmosphere analysis-forecast system. The results obtained from the OSE demonstrate that the use of INSAT-3D LT data improves the forecast skill of both maximum and minimum temperature over India, particularly in areas characterized by higher LT variability. The improvement is pronounced in forecasts of maximum (minimum) temperature during “Boreal” summer (“Boreal” winter) season. The verification scores also indicate that the incorporation of INSAT LT data substantially improves the NCUM model's forecast performance. By assimilating LT, the mean error of maximum and minimum temperature forecasts in India was decreased, accompanied by enhanced forecast accuracy within a time frame of approximately 24 h. The scores for the verification measures, specifically the Probability of Detection (POD), demonstrate a ~15% improvement in both the forecasts for maximum and minimum temperatures. This improves the temperature prediction as well as the ability to forecast intense weather episodes like cold spells and heat waves.
期刊介绍:
The aim of Meteorological Applications is to serve the needs of applied meteorologists, forecasters and users of meteorological services by publishing papers on all aspects of meteorological science, including:
applications of meteorological, climatological, analytical and forecasting data, and their socio-economic benefits;
forecasting, warning and service delivery techniques and methods;
weather hazards, their analysis and prediction;
performance, verification and value of numerical models and forecasting services;
practical applications of ocean and climate models;
education and training.