在大豆-小麦-玉米轮作中使用地下排水法进行为期 9 年的盐分管理

IF 1.3 Q3 AGRONOMY Agrosystems, Geosciences & Environment Pub Date : 2024-12-13 DOI:10.1002/agg2.70027
Nathan E. Derby, Abbey F. Wick, Thomas M. DeSutter, Aaron Lee M. Daigh
{"title":"在大豆-小麦-玉米轮作中使用地下排水法进行为期 9 年的盐分管理","authors":"Nathan E. Derby,&nbsp;Abbey F. Wick,&nbsp;Thomas M. DeSutter,&nbsp;Aaron Lee M. Daigh","doi":"10.1002/agg2.70027","DOIUrl":null,"url":null,"abstract":"<p>Soil salinity is a global issue that impacts crop production and requires management to contain and ameliorate. Although field-scale assessments are limited, a recent strategy used to manage salinity in the Northern Great Plains is the wide-spread adoption of subsurface drainage. Therefore, a study was conducted between 2013 and 2021 on a 57-ha field in southeastern North Dakota where changes in soil salinity, groundwater quality, and grain yields (soybean [<i>Glycine max</i>], wheat [<i>Triticum aestivum</i>], and corn [<i>Zea mays</i> L]) were compared between subsurface tile drained (TD) and undrained (UD) areas at the field scale. Topsoil (0–15 cm) electrical conductivity of saturated paste extract (EC<sub>e</sub>) decreased at a rate of 0.15 dS m<sup>−1</sup> year<sup>−1</sup> for TD but increased 0.03 dS m<sup>−1</sup> year<sup>−1</sup> for UD. The groundwater electrical conductivity of water (EC<sub>w</sub>) decreased 0.5 and 0.3 dS m<sup>−1</sup> year<sup>−1</sup> for TD and UD, respectively. Soil EC<sub>e</sub>, chloride (Cl<sup>−</sup>), sulfate-sulfur (SO<sub>4</sub><sup>2−</sup>-S), calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>), and magnesium (Mg<sup>2+</sup>) concentrations increased with soil depth for TD and UD. However, these ion concentrations decreased with time for TD and stayed relatively unchanged or increased for UD. Groundwater EC<sub>w</sub> and ion concentrations decreased over time for TD and to a lesser extent for UD. Groundwater levels increased slightly for TD but increased more for UD, where high water tables caused wet soil conditions resulting in yield reduction in several years. Soybean yields increase by 0.18 and 0.06 Mg ha<sup>−1</sup> year<sup>−1</sup> for TD and UD, respectively. Wheat grain yield increased over time for TD and UD at similar rates (0.17 and 0.18 Mg ha<sup>−1</sup> year<sup>−1</sup>, respectively). Corn grain yield increased slightly from 2016 to 2019 for TD, but decreased by 6.2 Mg ha<sup>−1</sup> from 2016 to 2019 for UD due to wet soil conditions. Overall, the outcomes of this field-scale study provide validation of similar outcomes reported in small-scale studies for subsurface drainage as a management tool for soil salinity in the Northern Great Plains.</p>","PeriodicalId":7567,"journal":{"name":"Agrosystems, Geosciences & Environment","volume":"7 4","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70027","citationCount":"0","resultStr":"{\"title\":\"Salinity management with subsurface drainage over 9 years in a soybean–wheat–corn rotation\",\"authors\":\"Nathan E. Derby,&nbsp;Abbey F. Wick,&nbsp;Thomas M. DeSutter,&nbsp;Aaron Lee M. Daigh\",\"doi\":\"10.1002/agg2.70027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Soil salinity is a global issue that impacts crop production and requires management to contain and ameliorate. Although field-scale assessments are limited, a recent strategy used to manage salinity in the Northern Great Plains is the wide-spread adoption of subsurface drainage. Therefore, a study was conducted between 2013 and 2021 on a 57-ha field in southeastern North Dakota where changes in soil salinity, groundwater quality, and grain yields (soybean [<i>Glycine max</i>], wheat [<i>Triticum aestivum</i>], and corn [<i>Zea mays</i> L]) were compared between subsurface tile drained (TD) and undrained (UD) areas at the field scale. Topsoil (0–15 cm) electrical conductivity of saturated paste extract (EC<sub>e</sub>) decreased at a rate of 0.15 dS m<sup>−1</sup> year<sup>−1</sup> for TD but increased 0.03 dS m<sup>−1</sup> year<sup>−1</sup> for UD. The groundwater electrical conductivity of water (EC<sub>w</sub>) decreased 0.5 and 0.3 dS m<sup>−1</sup> year<sup>−1</sup> for TD and UD, respectively. Soil EC<sub>e</sub>, chloride (Cl<sup>−</sup>), sulfate-sulfur (SO<sub>4</sub><sup>2−</sup>-S), calcium (Ca<sup>2+</sup>), sodium (Na<sup>+</sup>), and magnesium (Mg<sup>2+</sup>) concentrations increased with soil depth for TD and UD. However, these ion concentrations decreased with time for TD and stayed relatively unchanged or increased for UD. Groundwater EC<sub>w</sub> and ion concentrations decreased over time for TD and to a lesser extent for UD. Groundwater levels increased slightly for TD but increased more for UD, where high water tables caused wet soil conditions resulting in yield reduction in several years. Soybean yields increase by 0.18 and 0.06 Mg ha<sup>−1</sup> year<sup>−1</sup> for TD and UD, respectively. Wheat grain yield increased over time for TD and UD at similar rates (0.17 and 0.18 Mg ha<sup>−1</sup> year<sup>−1</sup>, respectively). Corn grain yield increased slightly from 2016 to 2019 for TD, but decreased by 6.2 Mg ha<sup>−1</sup> from 2016 to 2019 for UD due to wet soil conditions. Overall, the outcomes of this field-scale study provide validation of similar outcomes reported in small-scale studies for subsurface drainage as a management tool for soil salinity in the Northern Great Plains.</p>\",\"PeriodicalId\":7567,\"journal\":{\"name\":\"Agrosystems, Geosciences & Environment\",\"volume\":\"7 4\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/agg2.70027\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Agrosystems, Geosciences & Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AGRONOMY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Agrosystems, Geosciences & Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/agg2.70027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0

摘要

土壤盐碱化是一个影响作物生产的全球性问题,需要管理部门加以控制和改善。尽管实地规模的评估有限,但最近用于管理北部大平原盐度的策略是广泛采用地下排水。因此,研究人员在2013年至2021年期间对北达科他州东南部一块57公顷的农田进行了一项研究,在田间尺度上比较了地下排水(TD)和不排水(UD)地区的土壤盐度、地下水质量和谷物产量(大豆[Glycine max]、小麦[Triticum aestivum]和玉米[Zea mays L])的变化。饱和膏体提取物(ECe)表层土壤(0-15 cm)电导率在TD处理下以0.15 dS m−1年−1年的速率下降,而在UD处理下以0.03 dS m−1年−1年的速率上升。TD和UD的地下水电导率(ECw)分别下降0.5和0.3 dS m−1年。土壤ECe、氯化物(Cl−)、硫酸盐硫(SO42−-S)、钙(Ca2+)、钠(Na+)和镁(Mg2+)浓度随土壤深度的增加而增加。然而,这些离子浓度随着时间的推移而降低,而在UD中保持相对不变或增加。地下水ECw和离子浓度随着时间的推移而下降,而地下水ECw和离子浓度随着时间的推移而下降,UD的下降幅度较小。地下水水位在TD地区略有增加,但在UD地区增加更多,在那里,高地下水位造成潮湿的土壤条件,导致几年的产量下降。大豆产量分别增加0.18和0.06 Mg / ha - 1年。小麦籽粒产量随时间的推移以相似的速率增加(分别为0.17和0.18 Mg ha−1年−1)。2016 - 2019年,TD玉米产量略有增加,但由于土壤条件潮湿,UD玉米产量在2016 - 2019年减少了6.2 Mg ha - 1。总体而言,该野外规模研究的结果验证了北部大平原地下排水作为土壤盐度管理工具的小规模研究报告的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Salinity management with subsurface drainage over 9 years in a soybean–wheat–corn rotation

Soil salinity is a global issue that impacts crop production and requires management to contain and ameliorate. Although field-scale assessments are limited, a recent strategy used to manage salinity in the Northern Great Plains is the wide-spread adoption of subsurface drainage. Therefore, a study was conducted between 2013 and 2021 on a 57-ha field in southeastern North Dakota where changes in soil salinity, groundwater quality, and grain yields (soybean [Glycine max], wheat [Triticum aestivum], and corn [Zea mays L]) were compared between subsurface tile drained (TD) and undrained (UD) areas at the field scale. Topsoil (0–15 cm) electrical conductivity of saturated paste extract (ECe) decreased at a rate of 0.15 dS m−1 year−1 for TD but increased 0.03 dS m−1 year−1 for UD. The groundwater electrical conductivity of water (ECw) decreased 0.5 and 0.3 dS m−1 year−1 for TD and UD, respectively. Soil ECe, chloride (Cl), sulfate-sulfur (SO42−-S), calcium (Ca2+), sodium (Na+), and magnesium (Mg2+) concentrations increased with soil depth for TD and UD. However, these ion concentrations decreased with time for TD and stayed relatively unchanged or increased for UD. Groundwater ECw and ion concentrations decreased over time for TD and to a lesser extent for UD. Groundwater levels increased slightly for TD but increased more for UD, where high water tables caused wet soil conditions resulting in yield reduction in several years. Soybean yields increase by 0.18 and 0.06 Mg ha−1 year−1 for TD and UD, respectively. Wheat grain yield increased over time for TD and UD at similar rates (0.17 and 0.18 Mg ha−1 year−1, respectively). Corn grain yield increased slightly from 2016 to 2019 for TD, but decreased by 6.2 Mg ha−1 from 2016 to 2019 for UD due to wet soil conditions. Overall, the outcomes of this field-scale study provide validation of similar outcomes reported in small-scale studies for subsurface drainage as a management tool for soil salinity in the Northern Great Plains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Agrosystems, Geosciences & Environment
Agrosystems, Geosciences & Environment Agricultural and Biological Sciences-Agricultural and Biological Sciences (miscellaneous)
CiteScore
2.60
自引率
0.00%
发文量
80
审稿时长
24 weeks
期刊最新文献
Salinity management with subsurface drainage over 9 years in a soybean–wheat–corn rotation Root and shoot biomass and nutrient composition of winter rye cover crop following corn and soybean Understanding the yield impacts of alternative cover crop families and mixtures: Evidence from side-by-side plot-level panel data Carbon sequestration through sustainable land management practices in arid and semiarid regions: Insights from New Mexico Using electromagnetic induction to inform precision turfgrass management strategies in sand-capped golf course fairways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1