InSAR 对佛罗里达州迈阿密壁垒岛施工引起的海岸沉降的观测结果

IF 2.9 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Earth and Space Science Pub Date : 2024-12-13 DOI:10.1029/2024EA003852
Farzaneh Aziz Zanjani, Falk Amelung, Andreas Piter, Khaled Sobhan, Amin Tavakkoliestahbanati, Gregor P. Eberli, Mahmud Haghshenas Haghighi, Mahdi Motagh, Pietro Milillo, Sara Mirzaee, Antonio Nanni, Esber Andiroglu
{"title":"InSAR 对佛罗里达州迈阿密壁垒岛施工引起的海岸沉降的观测结果","authors":"Farzaneh Aziz Zanjani,&nbsp;Falk Amelung,&nbsp;Andreas Piter,&nbsp;Khaled Sobhan,&nbsp;Amin Tavakkoliestahbanati,&nbsp;Gregor P. Eberli,&nbsp;Mahmud Haghshenas Haghighi,&nbsp;Mahdi Motagh,&nbsp;Pietro Milillo,&nbsp;Sara Mirzaee,&nbsp;Antonio Nanni,&nbsp;Esber Andiroglu","doi":"10.1029/2024EA003852","DOIUrl":null,"url":null,"abstract":"<p>This study utilizes Interferometric Synthetic Aperture Radar (InSAR) to examine subsidence along the coastal strip of the Miami barrier islands from 2016 to 2023. Using Sentinel-1 data, we document vertical displacements ranging from 2 to 8 cm, affecting a total of 35 coastal buildings and their vicinity. About half of the subsiding structures are younger than 2014 and at the majority of them subsidence decays with time. This correlation suggests that the subsidence is related to construction activities. In northern and central Sunny Isles Beach, where 23% of coastal structures were built during the last decade, nearly 70% are experiencing subsidence. The majority of the older subsiding structures show sudden onset or sudden acceleration of subsidence, suggesting that this is due to construction activities in their vicinity; we have identified subsidence at distance of 200 m, possibly up to 320 m, from construction sites. We attribute the observed subsidence to load-induced, prolonged creep deformation of the sandy layers within the limestone, which is accelerated, if not instigated, by construction activities. Distant subsidence from a construction site could indicate extended sandy deposits. Anthropogenic and natural groundwater movements could also be driving the creep deformation. This study demonstrates that high-rise construction on karstic barrier islands can induce creep deformation in sandy layer within the limestone succession persisting for a decade or longer. It showcases the potential of InSAR technology for monitoring both building settlement and structural stability.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"11 12","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003852","citationCount":"0","resultStr":"{\"title\":\"InSAR Observations of Construction-Induced Coastal Subsidence on Miami's Barrier Islands, Florida\",\"authors\":\"Farzaneh Aziz Zanjani,&nbsp;Falk Amelung,&nbsp;Andreas Piter,&nbsp;Khaled Sobhan,&nbsp;Amin Tavakkoliestahbanati,&nbsp;Gregor P. Eberli,&nbsp;Mahmud Haghshenas Haghighi,&nbsp;Mahdi Motagh,&nbsp;Pietro Milillo,&nbsp;Sara Mirzaee,&nbsp;Antonio Nanni,&nbsp;Esber Andiroglu\",\"doi\":\"10.1029/2024EA003852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This study utilizes Interferometric Synthetic Aperture Radar (InSAR) to examine subsidence along the coastal strip of the Miami barrier islands from 2016 to 2023. Using Sentinel-1 data, we document vertical displacements ranging from 2 to 8 cm, affecting a total of 35 coastal buildings and their vicinity. About half of the subsiding structures are younger than 2014 and at the majority of them subsidence decays with time. This correlation suggests that the subsidence is related to construction activities. In northern and central Sunny Isles Beach, where 23% of coastal structures were built during the last decade, nearly 70% are experiencing subsidence. The majority of the older subsiding structures show sudden onset or sudden acceleration of subsidence, suggesting that this is due to construction activities in their vicinity; we have identified subsidence at distance of 200 m, possibly up to 320 m, from construction sites. We attribute the observed subsidence to load-induced, prolonged creep deformation of the sandy layers within the limestone, which is accelerated, if not instigated, by construction activities. Distant subsidence from a construction site could indicate extended sandy deposits. Anthropogenic and natural groundwater movements could also be driving the creep deformation. This study demonstrates that high-rise construction on karstic barrier islands can induce creep deformation in sandy layer within the limestone succession persisting for a decade or longer. It showcases the potential of InSAR technology for monitoring both building settlement and structural stability.</p>\",\"PeriodicalId\":54286,\"journal\":{\"name\":\"Earth and Space Science\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA003852\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Earth and Space Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003852\",\"RegionNum\":3,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earth and Space Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024EA003852","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究利用干涉合成孔径雷达(InSAR)研究了2016年至2023年迈阿密堰洲岛沿海地带的沉降情况。利用Sentinel-1数据,我们记录了垂直位移范围从2到8厘米,总共影响了35座沿海建筑物及其附近地区。大约一半的沉降构造比2014年更年轻,其中大多数沉降随时间而衰减。这种相关性表明下沉与建筑活动有关。在阳光岛海滩的北部和中部,23%的海岸建筑是在过去十年中建造的,近70%的建筑正在下沉。大多数老旧沉降构造表现为突然开始或突然加速沉降,表明这是由于其附近的建筑活动所致;我们已经确定了距离建筑工地200米,可能高达320米的下沉。我们将观测到的下沉归因于荷载引起的石灰岩内砂层的长期蠕变变形,如果不是由建筑活动引起的话,这种变形是加速的。建筑工地远处的下沉可能表明有大面积的沙质沉积物。人为和自然的地下水运动也可能导致蠕变变形。研究表明,喀斯特堰洲岛上的高层建筑可引起持续10年或更长时间的灰岩演替中的砂层蠕变。它展示了InSAR技术在监测建筑物沉降和结构稳定性方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
InSAR Observations of Construction-Induced Coastal Subsidence on Miami's Barrier Islands, Florida

This study utilizes Interferometric Synthetic Aperture Radar (InSAR) to examine subsidence along the coastal strip of the Miami barrier islands from 2016 to 2023. Using Sentinel-1 data, we document vertical displacements ranging from 2 to 8 cm, affecting a total of 35 coastal buildings and their vicinity. About half of the subsiding structures are younger than 2014 and at the majority of them subsidence decays with time. This correlation suggests that the subsidence is related to construction activities. In northern and central Sunny Isles Beach, where 23% of coastal structures were built during the last decade, nearly 70% are experiencing subsidence. The majority of the older subsiding structures show sudden onset or sudden acceleration of subsidence, suggesting that this is due to construction activities in their vicinity; we have identified subsidence at distance of 200 m, possibly up to 320 m, from construction sites. We attribute the observed subsidence to load-induced, prolonged creep deformation of the sandy layers within the limestone, which is accelerated, if not instigated, by construction activities. Distant subsidence from a construction site could indicate extended sandy deposits. Anthropogenic and natural groundwater movements could also be driving the creep deformation. This study demonstrates that high-rise construction on karstic barrier islands can induce creep deformation in sandy layer within the limestone succession persisting for a decade or longer. It showcases the potential of InSAR technology for monitoring both building settlement and structural stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Earth and Space Science
Earth and Space Science Earth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
5.50
自引率
3.20%
发文量
285
审稿时长
19 weeks
期刊介绍: Marking AGU’s second new open access journal in the last 12 months, Earth and Space Science is the only journal that reflects the expansive range of science represented by AGU’s 62,000 members, including all of the Earth, planetary, and space sciences, and related fields in environmental science, geoengineering, space engineering, and biogeochemistry.
期刊最新文献
Occurrence of Rare Lightning Events During Hurricane Nicholas (2021) Seasonal Cycle in Sea Level Across the Coastal Zone Trends of Summer Lake Surface Water Temperature on the Tibetan Plateau and Their Response to Climate Change Changing Extreme Precipitation Patterns in Nepal Over 1971–2015 InSAR Observations of Construction-Induced Coastal Subsidence on Miami's Barrier Islands, Florida
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1