基于瞬态地表反照率的社区地球系统模型(CESM)中城市气候适应模型的改进

IF 4.4 2区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES Journal of Advances in Modeling Earth Systems Pub Date : 2024-12-15 DOI:10.1029/2024MS004380
Yuan Sun, Bowen Fang, Keith W. Oleson, Lei Zhao, David O. Topping, David M. Schultz, Zhonghua Zheng
{"title":"基于瞬态地表反照率的社区地球系统模型(CESM)中城市气候适应模型的改进","authors":"Yuan Sun,&nbsp;Bowen Fang,&nbsp;Keith W. Oleson,&nbsp;Lei Zhao,&nbsp;David O. Topping,&nbsp;David M. Schultz,&nbsp;Zhonghua Zheng","doi":"10.1029/2024MS004380","DOIUrl":null,"url":null,"abstract":"<p>Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3-7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual-mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high-density and medium-density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.</p>","PeriodicalId":14881,"journal":{"name":"Journal of Advances in Modeling Earth Systems","volume":"16 12","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004380","citationCount":"0","resultStr":"{\"title\":\"Improving Urban Climate Adaptation Modeling in the Community Earth System Model (CESM) Through Transient Urban Surface Albedo Representation\",\"authors\":\"Yuan Sun,&nbsp;Bowen Fang,&nbsp;Keith W. Oleson,&nbsp;Lei Zhao,&nbsp;David O. Topping,&nbsp;David M. Schultz,&nbsp;Zhonghua Zheng\",\"doi\":\"10.1029/2024MS004380\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3-7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual-mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high-density and medium-density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.</p>\",\"PeriodicalId\":14881,\"journal\":{\"name\":\"Journal of Advances in Modeling Earth Systems\",\"volume\":\"16 12\",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2024-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024MS004380\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Advances in Modeling Earth Systems\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004380\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Advances in Modeling Earth Systems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024MS004380","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

通过安装白色屋顶等策略来增加城市表面的反照率,已经成为城市气候适应的一种有希望的方法。然而,由于在地球系统模型中使用静态城市地表反照率表示,这些策略在大尺度上的建模受到限制。在本研究中,我们在社区地球系统模型中开发了一种新的瞬态城市地表反照率方案,并评估了不同城市地表反照率配置下的演化适应策略。我们的模拟模拟了在SSP3-7.0情景下,从2015年到2099年,城市屋顶、不透水道路和墙壁的表面反照率逐渐增加。结果表明,屋顶反照率变化的降温效应可以将年平均冠层城市热岛强度从2015年的0.8°C降低到2099年的0.2°C。与高密度和中密度城市地区相比,较高的反照率配置在高层建筑区域的冷却环境中更有效。此外,城市地表反照率的变化导致建筑能耗的变化,其中高反照率导致位于北纬30°和南纬25°以上的城市地区室内采暖使用量增加。该方案提供了潜在的应用,如模拟城市表面的自然反照率变化,并允许包含其他城市参数,如表面发射率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Urban Climate Adaptation Modeling in the Community Earth System Model (CESM) Through Transient Urban Surface Albedo Representation

Increasing the albedo of urban surfaces, through strategies like white roof installations, has emerged as a promising approach for urban climate adaptation. Yet, modeling these strategies on a large scale is limited by the use of static urban surface albedo representations in the Earth system models. In this study, we developed a new transient urban surface albedo scheme in the Community Earth System Model and evaluated evolving adaptation strategies under varying urban surface albedo configurations. Our simulations model a gradual increase in the urban surface albedo of roofs, impervious roads, and walls from 2015 to 2099 under the SSP3-7.0 scenario. Results highlight the cooling effects of roof albedo modifications, which reduce the annual-mean canopy urban heat island intensity from 0.8°C in 2015 to 0.2°C by 2099. Compared to high-density and medium-density urban areas, higher albedo configurations are more effective in cooling environments within tall building districts. Additionally, urban surface albedo changes lead to changes in building energy consumption, where high albedo results in more indoor heating usage in urban areas located beyond 30°N and 25°S. This scheme offers potential applications like simulating natural albedo variations across urban surfaces and enables the inclusion of other urban parameters, such as surface emissivity.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Advances in Modeling Earth Systems
Journal of Advances in Modeling Earth Systems METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
11.40
自引率
11.80%
发文量
241
审稿时长
>12 weeks
期刊介绍: The Journal of Advances in Modeling Earth Systems (JAMES) is committed to advancing the science of Earth systems modeling by offering high-quality scientific research through online availability and open access licensing. JAMES invites authors and readers from the international Earth systems modeling community. Open access. Articles are available free of charge for everyone with Internet access to view and download. Formal peer review. Supplemental material, such as code samples, images, and visualizations, is published at no additional charge. No additional charge for color figures. Modest page charges to cover production costs. Articles published in high-quality full text PDF, HTML, and XML. Internal and external reference linking, DOI registration, and forward linking via CrossRef.
期刊最新文献
ELM-Wet: Inclusion of a Wet-Landunit With Sub-Grid Representation of Eco-Hydrological Patches and Hydrological Forcing Improves Methane Emission Estimations in the E3SM Land Model (ELM) LEMDA: A Lagrangian-Eulerian Multiscale Data Assimilation Framework Issue Information Development of a Data-Driven Lightning Scheme for Implementation in Global Climate Models Energetically Consistent Eddy-Diffusivity Mass-Flux Convective Schemes: 1. Theory and Models
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1