Murat Can Ozden, Ugur Simsek, Mirhan Ozdemir, Cemal Efe Gayir, Polat Sendur
{"title":"三周期最小表面晶格结构的创新振动控制:一种约束层阻尼硅粘弹性层集成的混合方法","authors":"Murat Can Ozden, Ugur Simsek, Mirhan Ozdemir, Cemal Efe Gayir, Polat Sendur","doi":"10.1002/adem.202401851","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Vibration Control of Triply Periodic Minimum Surfaces Lattice Structures: A Hybrid Approach with Constrained Layer Damping Silicone–Viscoelastic Layer Integration\",\"authors\":\"Murat Can Ozden, Ugur Simsek, Mirhan Ozdemir, Cemal Efe Gayir, Polat Sendur\",\"doi\":\"10.1002/adem.202401851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401851\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401851","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Innovative Vibration Control of Triply Periodic Minimum Surfaces Lattice Structures: A Hybrid Approach with Constrained Layer Damping Silicone–Viscoelastic Layer Integration
This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.
期刊介绍:
Advanced Engineering Materials is the membership journal of three leading European Materials Societies
- German Materials Society/DGM,
- French Materials Society/SF2M,
- Swiss Materials Federation/SVMT.