三周期最小表面晶格结构的创新振动控制:一种约束层阻尼硅粘弹性层集成的混合方法

IF 3.4 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Engineering Materials Pub Date : 2024-11-15 DOI:10.1002/adem.202401851
Murat Can Ozden, Ugur Simsek, Mirhan Ozdemir, Cemal Efe Gayir, Polat Sendur
{"title":"三周期最小表面晶格结构的创新振动控制:一种约束层阻尼硅粘弹性层集成的混合方法","authors":"Murat Can Ozden,&nbsp;Ugur Simsek,&nbsp;Mirhan Ozdemir,&nbsp;Cemal Efe Gayir,&nbsp;Polat Sendur","doi":"10.1002/adem.202401851","DOIUrl":null,"url":null,"abstract":"<p>This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.</p>","PeriodicalId":7275,"journal":{"name":"Advanced Engineering Materials","volume":"26 24","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Innovative Vibration Control of Triply Periodic Minimum Surfaces Lattice Structures: A Hybrid Approach with Constrained Layer Damping Silicone–Viscoelastic Layer Integration\",\"authors\":\"Murat Can Ozden,&nbsp;Ugur Simsek,&nbsp;Mirhan Ozdemir,&nbsp;Cemal Efe Gayir,&nbsp;Polat Sendur\",\"doi\":\"10.1002/adem.202401851\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.</p>\",\"PeriodicalId\":7275,\"journal\":{\"name\":\"Advanced Engineering Materials\",\"volume\":\"26 24\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Engineering Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401851\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Engineering Materials","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adem.202401851","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了一种将超材料与约束层阻尼(CLD)应用相结合来提高三周期最小表面(TPMS)结构阻尼性能的新方法。这一目标是通过将粘弹性有机硅聚合物层与使用铝合金粉末激光粉末床熔合制成的原始TPMS结构相结合来实现的。基于体素单元的有限元模型具有较高的精度和计算效率,可用于分析基于tpms的CLD结构在不同频率下的阻尼特性。模态试验结果验证了有限元模型具有较高的精度。采用时域和频域两种不同的阻尼表征方法来量化阻尼性能。结果表明,与金属TPMS结构相比,在时域上的阻尼性能提高了五倍。在频域,使用频率响应积分法,与金属参考结构相比,结构的累积振动降低了76%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Innovative Vibration Control of Triply Periodic Minimum Surfaces Lattice Structures: A Hybrid Approach with Constrained Layer Damping Silicone–Viscoelastic Layer Integration

This article introduces a novel method to enhance the damping performance of triply periodic minimal surface (TPMS) structures by integrating metamaterials with constrained layer damping (CLD) applications. This objective is accomplished by combining a viscoelastic silicone polymer layer with a primitive TPMS structure fabricated through laser powder bed fusion using aluminum alloy powder. Finite-element method (FEM) models using voxel elements, due to their high accuracy and computational efficiency, are developed to analyze the damping behavior of the TPMS-based CLD structure across various frequencies. Experimental modal test results validate the FEM model with high accuracy. Two distinct damping characterization methods, both time-domain and frequency-based, are employed to quantify the damping performance. The results reveal a fivefold improvement in damping performance in the time domain compared to the metal TPMS structure. In the frequency domain, the structure demonstrates 76% lower cumulative vibration compared to the metallic reference using the integral of frequency response method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Engineering Materials
Advanced Engineering Materials 工程技术-材料科学:综合
CiteScore
5.70
自引率
5.60%
发文量
544
审稿时长
1.7 months
期刊介绍: Advanced Engineering Materials is the membership journal of three leading European Materials Societies - German Materials Society/DGM, - French Materials Society/SF2M, - Swiss Materials Federation/SVMT.
期刊最新文献
Masthead Manufacturing of Continuous Core–Shell Hydrated Salt Fibers for Room Temperature Thermal Energy Storage An Interactive Fluid–Solid Approach for Numerical Modeling of Composite Metal Foam Behavior under Compression Masthead High-Throughput Production of Gelatin-Based Touch-Spun Nanofiber for Biomedical Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1