P. V. Nguyen, L. M. Condron, Z. P. Simpson, R. W. McDowell
{"title":"添加豆科绿肥可提高作物生物量、养分吸收、土壤磷动态和生物有效性","authors":"P. V. Nguyen, L. M. Condron, Z. P. Simpson, R. W. McDowell","doi":"10.1002/sae2.70035","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Introduction</h3>\n \n <p>In agroecosystems, phosphorus (P) applications over a long time have accumulated in soil as legacy P. This environmental challenge can be an agronomic opportunity as soil legacy P could be recovered in cropping systems using practices such as green manuring. We hypothesised that, at moderate soil available P levels, plant-soil interactions under green manures can mobilise soil legacy P and promote cereal crop P uptake and growth.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Alongside a fallow treatment, three green manure treatments that included two legume treatments (narrow-leaf lupin [<i>Lupinus angustifolius</i>], pea [<i>Pisum sativum</i> L.]) and one cereal treatment (wheat [<i>Triticum aestivum</i>] and barley [<i>Hordeum vulgare</i>]) were rotated with the main crops of wheat and barley in two phases on a pumice soil (27 mg kg<sup>−1</sup> Olsen P) in a microcosm experiment. Plant roots and shoots and end-of-experiment soil samples were collected for analysis.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>Over two crop rotations, inclusion of narrow-leaf lupin and pea green manures significantly increased main crop biomass (27%–35%) and P uptake (15%–29%) relative to control, while the cereal green manure decreased the following crop's yield (−13%) and P uptake (−19%). Relative to fallow, microbial biomass P and soil organic P pools increased under all green manures yet total inorganic P decreased under leguminous green manures. This depletion (35 mg P kg<sup>−1</sup>) under narrow-leaf lupin was equivalent to ~47 kg P ha<sup>−1</sup>. Phosphatase enzyme activities relevant to P cycling increased particularly under leguminous green manure treatments.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>Leguminous green manures such as narrow-leaf lupin could mobilise soil P to crops in field conditions, suggesting that drawdown of soil legacy P while sustaining crop yield can be tenable.</p>\n </section>\n </div>","PeriodicalId":100834,"journal":{"name":"Journal of Sustainable Agriculture and Environment","volume":"3 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70035","citationCount":"0","resultStr":"{\"title\":\"Inclusion of Leguminous Green Manures Enhances Crop Biomass, Nutrient Uptake, Soil Phosphorus Dynamics and Bioavailability\",\"authors\":\"P. V. Nguyen, L. M. Condron, Z. P. Simpson, R. W. McDowell\",\"doi\":\"10.1002/sae2.70035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Introduction</h3>\\n \\n <p>In agroecosystems, phosphorus (P) applications over a long time have accumulated in soil as legacy P. This environmental challenge can be an agronomic opportunity as soil legacy P could be recovered in cropping systems using practices such as green manuring. We hypothesised that, at moderate soil available P levels, plant-soil interactions under green manures can mobilise soil legacy P and promote cereal crop P uptake and growth.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Alongside a fallow treatment, three green manure treatments that included two legume treatments (narrow-leaf lupin [<i>Lupinus angustifolius</i>], pea [<i>Pisum sativum</i> L.]) and one cereal treatment (wheat [<i>Triticum aestivum</i>] and barley [<i>Hordeum vulgare</i>]) were rotated with the main crops of wheat and barley in two phases on a pumice soil (27 mg kg<sup>−1</sup> Olsen P) in a microcosm experiment. Plant roots and shoots and end-of-experiment soil samples were collected for analysis.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>Over two crop rotations, inclusion of narrow-leaf lupin and pea green manures significantly increased main crop biomass (27%–35%) and P uptake (15%–29%) relative to control, while the cereal green manure decreased the following crop's yield (−13%) and P uptake (−19%). Relative to fallow, microbial biomass P and soil organic P pools increased under all green manures yet total inorganic P decreased under leguminous green manures. This depletion (35 mg P kg<sup>−1</sup>) under narrow-leaf lupin was equivalent to ~47 kg P ha<sup>−1</sup>. Phosphatase enzyme activities relevant to P cycling increased particularly under leguminous green manure treatments.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>Leguminous green manures such as narrow-leaf lupin could mobilise soil P to crops in field conditions, suggesting that drawdown of soil legacy P while sustaining crop yield can be tenable.</p>\\n </section>\\n </div>\",\"PeriodicalId\":100834,\"journal\":{\"name\":\"Journal of Sustainable Agriculture and Environment\",\"volume\":\"3 4\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/sae2.70035\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Sustainable Agriculture and Environment\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Agriculture and Environment","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/sae2.70035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Inclusion of Leguminous Green Manures Enhances Crop Biomass, Nutrient Uptake, Soil Phosphorus Dynamics and Bioavailability
Introduction
In agroecosystems, phosphorus (P) applications over a long time have accumulated in soil as legacy P. This environmental challenge can be an agronomic opportunity as soil legacy P could be recovered in cropping systems using practices such as green manuring. We hypothesised that, at moderate soil available P levels, plant-soil interactions under green manures can mobilise soil legacy P and promote cereal crop P uptake and growth.
Methods
Alongside a fallow treatment, three green manure treatments that included two legume treatments (narrow-leaf lupin [Lupinus angustifolius], pea [Pisum sativum L.]) and one cereal treatment (wheat [Triticum aestivum] and barley [Hordeum vulgare]) were rotated with the main crops of wheat and barley in two phases on a pumice soil (27 mg kg−1 Olsen P) in a microcosm experiment. Plant roots and shoots and end-of-experiment soil samples were collected for analysis.
Results
Over two crop rotations, inclusion of narrow-leaf lupin and pea green manures significantly increased main crop biomass (27%–35%) and P uptake (15%–29%) relative to control, while the cereal green manure decreased the following crop's yield (−13%) and P uptake (−19%). Relative to fallow, microbial biomass P and soil organic P pools increased under all green manures yet total inorganic P decreased under leguminous green manures. This depletion (35 mg P kg−1) under narrow-leaf lupin was equivalent to ~47 kg P ha−1. Phosphatase enzyme activities relevant to P cycling increased particularly under leguminous green manure treatments.
Conclusions
Leguminous green manures such as narrow-leaf lupin could mobilise soil P to crops in field conditions, suggesting that drawdown of soil legacy P while sustaining crop yield can be tenable.