镍诱导代谢损伤的生化影响及白藜芦醇和抗坏血酸的保护作用

IF 3.5 2区 农林科学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Journal of Food Biochemistry Pub Date : 2024-12-18 DOI:10.1155/jfbc/8607956
Ali Feezan, Samina Afzal, Syed Muhammad Shoaib, Kanwal Rehman, Amjad Hussain, Muhammad Sajid Hamid Akash, Mudassar Shahid, Bushra Sadaf
{"title":"镍诱导代谢损伤的生化影响及白藜芦醇和抗坏血酸的保护作用","authors":"Ali Feezan,&nbsp;Samina Afzal,&nbsp;Syed Muhammad Shoaib,&nbsp;Kanwal Rehman,&nbsp;Amjad Hussain,&nbsp;Muhammad Sajid Hamid Akash,&nbsp;Mudassar Shahid,&nbsp;Bushra Sadaf","doi":"10.1155/jfbc/8607956","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Nickel exposure is known to induce oxidative stress and inflammation and disrupt critical metabolic pathways, leading to hepatic dysfunction and impaired glucose regulation. This study aimed to evaluate the biochemical effects of nickel-induced metabolic impairments in an animal model, using a variety of techniques, including ELISA and instrumental analysis, with a specific focus on the expression of key genes involved in insulin regulation and glucose homeostasis. The experiment included four groups: Control, Nickel-exposed, Nickel-exposed with standard treatment (ascorbic acid, AA), and Nickel-exposed with resveratrol (RSV). Serum nickel levels, measured via ICP-MS, showed a significant increase in the exposed group, with a mean value of 125.74 ± 6.20 ppb. The analysis of various metabolic biomarkers demonstrated that nickel exposure resulted in hyperglycemia, elevated HOMA-IR, HbA1c, and DPP-4, increased level of inflammatory cytokines, altered lipid profiles, and impaired liver and kidney function. Nickel exposure triggered inflammation, disrupted carbohydrate metabolism, induced oxidative stress, and altered the expression of genes related to hepatic inflammation, endoplasmic reticulum (ER) stress, and glucose and lipid metabolism. These changes culminated in mitochondrial dysfunction, impaired glucose metabolism, and insulin resistance, as evidenced by reduced expression of GLUT-2 and GCK—genes critical for glucose uptake and insulin secretion. Elevated serum levels of amino acids, such as glutamate and valine, further indicated disruptions in amino acid metabolism and oxidative stress. Therapeutic interventions with AA and RSV demonstrated significant protective effects: Both compounds mitigated oxidative stress, reduced inflammatory cytokines, and restored normal expression levels of GCK and GLUT-2, improving glucose metabolism and insulin sensitivity. Additionally, AA and RSV alleviated mitochondrial dysfunction, suppressing the overexpression of UCP2, a protein linked to impaired energy metabolism. Serum amino acid levels were also normalized, highlighting their role in reestablishing metabolic balance. In conclusion, this study highlights the therapeutic potential of AA and RSV in mitigating nickel-induced hepatic and metabolic disturbances. These findings emphasize the importance of addressing oxidative stress and inflammation in metabolic disorders and position RSV as promising candidate for restoring metabolic homeostasis. Further research is warranted to elucidate the precise molecular mechanisms underlying their protective effects.</p>\n </div>","PeriodicalId":15802,"journal":{"name":"Journal of Food Biochemistry","volume":"2024 1","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/8607956","citationCount":"0","resultStr":"{\"title\":\"Biochemical Impact of Nickel-Induced Metabolic Impairment and the Protective Effects of Resveratrol and Ascorbic Acid\",\"authors\":\"Ali Feezan,&nbsp;Samina Afzal,&nbsp;Syed Muhammad Shoaib,&nbsp;Kanwal Rehman,&nbsp;Amjad Hussain,&nbsp;Muhammad Sajid Hamid Akash,&nbsp;Mudassar Shahid,&nbsp;Bushra Sadaf\",\"doi\":\"10.1155/jfbc/8607956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n <p>Nickel exposure is known to induce oxidative stress and inflammation and disrupt critical metabolic pathways, leading to hepatic dysfunction and impaired glucose regulation. This study aimed to evaluate the biochemical effects of nickel-induced metabolic impairments in an animal model, using a variety of techniques, including ELISA and instrumental analysis, with a specific focus on the expression of key genes involved in insulin regulation and glucose homeostasis. The experiment included four groups: Control, Nickel-exposed, Nickel-exposed with standard treatment (ascorbic acid, AA), and Nickel-exposed with resveratrol (RSV). Serum nickel levels, measured via ICP-MS, showed a significant increase in the exposed group, with a mean value of 125.74 ± 6.20 ppb. The analysis of various metabolic biomarkers demonstrated that nickel exposure resulted in hyperglycemia, elevated HOMA-IR, HbA1c, and DPP-4, increased level of inflammatory cytokines, altered lipid profiles, and impaired liver and kidney function. Nickel exposure triggered inflammation, disrupted carbohydrate metabolism, induced oxidative stress, and altered the expression of genes related to hepatic inflammation, endoplasmic reticulum (ER) stress, and glucose and lipid metabolism. These changes culminated in mitochondrial dysfunction, impaired glucose metabolism, and insulin resistance, as evidenced by reduced expression of GLUT-2 and GCK—genes critical for glucose uptake and insulin secretion. Elevated serum levels of amino acids, such as glutamate and valine, further indicated disruptions in amino acid metabolism and oxidative stress. Therapeutic interventions with AA and RSV demonstrated significant protective effects: Both compounds mitigated oxidative stress, reduced inflammatory cytokines, and restored normal expression levels of GCK and GLUT-2, improving glucose metabolism and insulin sensitivity. Additionally, AA and RSV alleviated mitochondrial dysfunction, suppressing the overexpression of UCP2, a protein linked to impaired energy metabolism. Serum amino acid levels were also normalized, highlighting their role in reestablishing metabolic balance. In conclusion, this study highlights the therapeutic potential of AA and RSV in mitigating nickel-induced hepatic and metabolic disturbances. These findings emphasize the importance of addressing oxidative stress and inflammation in metabolic disorders and position RSV as promising candidate for restoring metabolic homeostasis. Further research is warranted to elucidate the precise molecular mechanisms underlying their protective effects.</p>\\n </div>\",\"PeriodicalId\":15802,\"journal\":{\"name\":\"Journal of Food Biochemistry\",\"volume\":\"2024 1\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1155/jfbc/8607956\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Food Biochemistry\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/8607956\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Food Biochemistry","FirstCategoryId":"97","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/jfbc/8607956","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

已知镍暴露会诱导氧化应激和炎症,破坏关键的代谢途径,导致肝功能障碍和葡萄糖调节受损。本研究旨在利用ELISA和仪器分析等多种技术,在动物模型中评估镍诱导的代谢损伤的生化效应,特别关注参与胰岛素调节和葡萄糖稳态的关键基因的表达。实验分为四组:对照组、镍暴露组、镍暴露标准处理组(抗坏血酸AA)和镍暴露白藜芦醇(RSV)。通过ICP-MS测定血清镍水平,暴露组血清镍水平显著升高,平均值为125.74±6.20 ppb。各种代谢生物标志物的分析表明,镍暴露导致高血糖、HOMA-IR、HbA1c和DPP-4升高,炎症细胞因子水平升高,脂质谱改变,肝肾功能受损。镍暴露引发炎症,破坏碳水化合物代谢,诱导氧化应激,并改变与肝脏炎症、内质网应激和糖脂代谢相关的基因表达。这些变化最终导致线粒体功能障碍、葡萄糖代谢受损和胰岛素抵抗,这可以通过对葡萄糖摄取和胰岛素分泌至关重要的GLUT-2和gck基因的表达减少来证明。血清中谷氨酸和缬氨酸等氨基酸水平升高,进一步表明氨基酸代谢和氧化应激受到破坏。AA和RSV治疗干预显示出显著的保护作用:两种化合物均可减轻氧化应激,降低炎症因子,恢复正常的GCK和GLUT-2表达水平,改善葡萄糖代谢和胰岛素敏感性。此外,AA和RSV减轻线粒体功能障碍,抑制UCP2的过表达,UCP2是一种与能量代谢受损相关的蛋白质。血清氨基酸水平也恢复正常,突出了它们在重建代谢平衡中的作用。总之,本研究强调了AA和RSV在减轻镍诱导的肝脏和代谢紊乱方面的治疗潜力。这些发现强调了在代谢紊乱中解决氧化应激和炎症的重要性,并将RSV定位为恢复代谢稳态的有希望的候选者。需要进一步的研究来阐明其保护作用的确切分子机制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Biochemical Impact of Nickel-Induced Metabolic Impairment and the Protective Effects of Resveratrol and Ascorbic Acid

Nickel exposure is known to induce oxidative stress and inflammation and disrupt critical metabolic pathways, leading to hepatic dysfunction and impaired glucose regulation. This study aimed to evaluate the biochemical effects of nickel-induced metabolic impairments in an animal model, using a variety of techniques, including ELISA and instrumental analysis, with a specific focus on the expression of key genes involved in insulin regulation and glucose homeostasis. The experiment included four groups: Control, Nickel-exposed, Nickel-exposed with standard treatment (ascorbic acid, AA), and Nickel-exposed with resveratrol (RSV). Serum nickel levels, measured via ICP-MS, showed a significant increase in the exposed group, with a mean value of 125.74 ± 6.20 ppb. The analysis of various metabolic biomarkers demonstrated that nickel exposure resulted in hyperglycemia, elevated HOMA-IR, HbA1c, and DPP-4, increased level of inflammatory cytokines, altered lipid profiles, and impaired liver and kidney function. Nickel exposure triggered inflammation, disrupted carbohydrate metabolism, induced oxidative stress, and altered the expression of genes related to hepatic inflammation, endoplasmic reticulum (ER) stress, and glucose and lipid metabolism. These changes culminated in mitochondrial dysfunction, impaired glucose metabolism, and insulin resistance, as evidenced by reduced expression of GLUT-2 and GCK—genes critical for glucose uptake and insulin secretion. Elevated serum levels of amino acids, such as glutamate and valine, further indicated disruptions in amino acid metabolism and oxidative stress. Therapeutic interventions with AA and RSV demonstrated significant protective effects: Both compounds mitigated oxidative stress, reduced inflammatory cytokines, and restored normal expression levels of GCK and GLUT-2, improving glucose metabolism and insulin sensitivity. Additionally, AA and RSV alleviated mitochondrial dysfunction, suppressing the overexpression of UCP2, a protein linked to impaired energy metabolism. Serum amino acid levels were also normalized, highlighting their role in reestablishing metabolic balance. In conclusion, this study highlights the therapeutic potential of AA and RSV in mitigating nickel-induced hepatic and metabolic disturbances. These findings emphasize the importance of addressing oxidative stress and inflammation in metabolic disorders and position RSV as promising candidate for restoring metabolic homeostasis. Further research is warranted to elucidate the precise molecular mechanisms underlying their protective effects.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Food Biochemistry
Journal of Food Biochemistry 生物-生化与分子生物学
CiteScore
7.80
自引率
5.00%
发文量
488
审稿时长
3.6 months
期刊介绍: The Journal of Food Biochemistry publishes fully peer-reviewed original research and review papers on the effects of handling, storage, and processing on the biochemical aspects of food tissues, systems, and bioactive compounds in the diet. Researchers in food science, food technology, biochemistry, and nutrition, particularly based in academia and industry, will find much of great use and interest in the journal. Coverage includes: -Biochemistry of postharvest/postmortem and processing problems -Enzyme chemistry and technology -Membrane biology and chemistry -Cell biology -Biophysics -Genetic expression -Pharmacological properties of food ingredients with an emphasis on the content of bioactive ingredients in foods Examples of topics covered in recently-published papers on two topics of current wide interest, nutraceuticals/functional foods and postharvest/postmortem, include the following: -Bioactive compounds found in foods, such as chocolate and herbs, as they affect serum cholesterol, diabetes, hypertension, and heart disease -The mechanism of the ripening process in fruit -The biogenesis of flavor precursors in meat -How biochemical changes in farm-raised fish are affecting processing and edible quality
期刊最新文献
Ginger (Zingiber officinale Roscoe) Bioactive Components: Potential Resources for Kidney Health Combatting BPA-Induced Neurotoxicity With Purple Carrot Extract (Daucus carota): Modulation of Key Neurotransmitters and Cellular Pathways in Albino Rats Amelioratory Role of Lactobacillus paracasei N1115 on Blood Glucose, Inflammation, Cognitive Function, and Gut Microbiota Composition in Type 2 Diabetes Mellitus Rats Impact of Commercial Preparations of Pectinases on the Chemical Composition and Stability of Phenolic Compounds in Grape Juices Shenbing Decoction III and Apigenin Improve Peritoneal Fibrosis Mediated by Epithelial–Mesenchymal Transition Through TAK1/p38MAPK/NF-κB Pathways
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1