大规模自下而上制造的三维非线性光子晶体

IF 3.7 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY Advanced Photonics Research Pub Date : 2024-05-23 DOI:10.1002/adpr.202400058
Viola Valentina Vogler-Neuling, Ülle-Linda Talts, Rebecca Ferraro, Helena Weigand, Giovanni Finco, Joel Winiger, Peter Benedek, Justine Kusch, Artemios Karvounis, Vanessa Wood, Jürg Leuthold, Rachel Grange
{"title":"大规模自下而上制造的三维非线性光子晶体","authors":"Viola Valentina Vogler-Neuling,&nbsp;Ülle-Linda Talts,&nbsp;Rebecca Ferraro,&nbsp;Helena Weigand,&nbsp;Giovanni Finco,&nbsp;Joel Winiger,&nbsp;Peter Benedek,&nbsp;Justine Kusch,&nbsp;Artemios Karvounis,&nbsp;Vanessa Wood,&nbsp;Jürg Leuthold,&nbsp;Rachel Grange","doi":"10.1002/adpr.202400058","DOIUrl":null,"url":null,"abstract":"<p>Nonlinear optical effects are used to generate coherent light at wavelengths difficult to reach with lasers. Materials periodically poled or nanostructured in the nonlinear susceptibility in three spatial directions are called 3D nonlinear photonic crystals (NPhCs). They enable enhanced nonlinear optical conversion efficiencies, emission control, and simultaneous generation of nonlinear wavelengths. The chemical inertness of efficient second-order nonlinear materials (<span></span><math>\n <semantics>\n <mrow>\n <msup>\n <mi>χ</mi>\n <mrow>\n <mo>(</mo>\n <mn>2</mn>\n <mo>)</mo>\n </mrow>\n </msup>\n </mrow>\n <annotation>$\\left(\\chi\\right)^{\\left(\\right. 2 \\left.\\right)}$</annotation>\n </semantics></math>) prohibits their nanofabrication until 2018. The current methods are restricted to top-down laser-based techniques limiting the periodicity along the <i>z</i>-axis to <span></span><math>\n <semantics>\n <mrow>\n <mn>10</mn>\n <mtext> </mtext>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$10 \\text{ } \\mu \\text{m} $</annotation>\n </semantics></math>. The first bottom-up fabricated 3D NPhC is demonstrated in sol–gel-derived barium titanate by soft-nanoimprint lithography: a woodpile with eight layers and periodicities of <span></span><math>\n <semantics>\n <mrow>\n <mn>1</mn>\n <mtext> </mtext>\n <mi>μ</mi>\n <mi>m</mi>\n </mrow>\n <annotation>$1 \\text{ } \\mu \\text{m} $</annotation>\n </semantics></math> (<span></span><math>\n <semantics>\n <mrow>\n <mi>x</mi>\n <mi>y</mi>\n </mrow>\n <annotation>$x y$</annotation>\n </semantics></math>-plane) and <span></span><math>\n <semantics>\n <mrow>\n <mn>300</mn>\n <mtext> </mtext>\n <mi> </mi>\n <mi> </mi>\n <mtext>nm</mtext>\n </mrow>\n <annotation>$300 \\textrm{ } \\textrm{ } \\textrm{ } \\text{nm}$</annotation>\n </semantics></math> (<i>z</i>-plane). The surface areas exceed <span></span><math>\n <semantics>\n <mrow>\n <mn>5.3</mn>\n <mo>×</mo>\n <msup>\n <mn>10</mn>\n <mn>4</mn>\n </msup>\n <mo> </mo>\n <mi>μ</mi>\n <msup>\n <mi>m</mi>\n <mn>2</mn>\n </msup>\n </mrow>\n <annotation>$5.3 \\times \\left(10\\right)^{4} \\mu \\left(\\text{m}\\right)^{2} $</annotation>\n </semantics></math>, which is two orders of magnitude larger than the state-of-the-art. This study is expected to initiate bottom-up fabrication of 3D NPhCs with a supremely strong and versatile nonlinear response.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400058","citationCount":"0","resultStr":"{\"title\":\"Large-Scale Bottom-Up Fabricated 3D Nonlinear Photonic Crystals\",\"authors\":\"Viola Valentina Vogler-Neuling,&nbsp;Ülle-Linda Talts,&nbsp;Rebecca Ferraro,&nbsp;Helena Weigand,&nbsp;Giovanni Finco,&nbsp;Joel Winiger,&nbsp;Peter Benedek,&nbsp;Justine Kusch,&nbsp;Artemios Karvounis,&nbsp;Vanessa Wood,&nbsp;Jürg Leuthold,&nbsp;Rachel Grange\",\"doi\":\"10.1002/adpr.202400058\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Nonlinear optical effects are used to generate coherent light at wavelengths difficult to reach with lasers. Materials periodically poled or nanostructured in the nonlinear susceptibility in three spatial directions are called 3D nonlinear photonic crystals (NPhCs). They enable enhanced nonlinear optical conversion efficiencies, emission control, and simultaneous generation of nonlinear wavelengths. The chemical inertness of efficient second-order nonlinear materials (<span></span><math>\\n <semantics>\\n <mrow>\\n <msup>\\n <mi>χ</mi>\\n <mrow>\\n <mo>(</mo>\\n <mn>2</mn>\\n <mo>)</mo>\\n </mrow>\\n </msup>\\n </mrow>\\n <annotation>$\\\\left(\\\\chi\\\\right)^{\\\\left(\\\\right. 2 \\\\left.\\\\right)}$</annotation>\\n </semantics></math>) prohibits their nanofabrication until 2018. The current methods are restricted to top-down laser-based techniques limiting the periodicity along the <i>z</i>-axis to <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>10</mn>\\n <mtext> </mtext>\\n <mi>μ</mi>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$10 \\\\text{ } \\\\mu \\\\text{m} $</annotation>\\n </semantics></math>. The first bottom-up fabricated 3D NPhC is demonstrated in sol–gel-derived barium titanate by soft-nanoimprint lithography: a woodpile with eight layers and periodicities of <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>1</mn>\\n <mtext> </mtext>\\n <mi>μ</mi>\\n <mi>m</mi>\\n </mrow>\\n <annotation>$1 \\\\text{ } \\\\mu \\\\text{m} $</annotation>\\n </semantics></math> (<span></span><math>\\n <semantics>\\n <mrow>\\n <mi>x</mi>\\n <mi>y</mi>\\n </mrow>\\n <annotation>$x y$</annotation>\\n </semantics></math>-plane) and <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>300</mn>\\n <mtext> </mtext>\\n <mi> </mi>\\n <mi> </mi>\\n <mtext>nm</mtext>\\n </mrow>\\n <annotation>$300 \\\\textrm{ } \\\\textrm{ } \\\\textrm{ } \\\\text{nm}$</annotation>\\n </semantics></math> (<i>z</i>-plane). The surface areas exceed <span></span><math>\\n <semantics>\\n <mrow>\\n <mn>5.3</mn>\\n <mo>×</mo>\\n <msup>\\n <mn>10</mn>\\n <mn>4</mn>\\n </msup>\\n <mo> </mo>\\n <mi>μ</mi>\\n <msup>\\n <mi>m</mi>\\n <mn>2</mn>\\n </msup>\\n </mrow>\\n <annotation>$5.3 \\\\times \\\\left(10\\\\right)^{4} \\\\mu \\\\left(\\\\text{m}\\\\right)^{2} $</annotation>\\n </semantics></math>, which is two orders of magnitude larger than the state-of-the-art. This study is expected to initiate bottom-up fabrication of 3D NPhCs with a supremely strong and versatile nonlinear response.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-05-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400058\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400058\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400058","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

非线性光学效应用于产生激光难以达到的波长的相干光。在三个空间方向上具有非线性磁化率的周期性极化或纳米结构的材料称为三维非线性光子晶体。它们能够增强非线性光学转换效率,发射控制,并同时产生非线性波长。高效二阶非线性材料的化学惰性(χ (2) $\left(\chi\right)^{\left(\right. 2 \left.\right)}$)在2018年之前禁止其纳米制造。目前的方法仅限于自上而下的基于激光的技术,将沿z轴的周期性限制在10 μ m $10 \text{ } \mu \text{m} $。通过软纳米压印光刻技术,首次在溶胶-凝胶衍生的钛酸钡中制备了自下而上的三维NPhC。八层木桩,周期为1 μ m $1 \text{ } \mu \text{m} $ (x y $x y$ -平面),周期为300 μ mnm $300 \textrm{ } \textrm{ } \textrm{ } \text{nm}$ (z平面)。表面面积超过5.3 × 10.4 μ m2 $5.3 \times \left(10\right)^{4} \mu \left(\text{m}\right)^{2} $,比目前最先进的产品大了两个数量级。该研究有望启动具有超强和通用非线性响应的三维NPhCs的自下而上制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Large-Scale Bottom-Up Fabricated 3D Nonlinear Photonic Crystals

Nonlinear optical effects are used to generate coherent light at wavelengths difficult to reach with lasers. Materials periodically poled or nanostructured in the nonlinear susceptibility in three spatial directions are called 3D nonlinear photonic crystals (NPhCs). They enable enhanced nonlinear optical conversion efficiencies, emission control, and simultaneous generation of nonlinear wavelengths. The chemical inertness of efficient second-order nonlinear materials ( χ ( 2 ) $\left(\chi\right)^{\left(\right. 2 \left.\right)}$ ) prohibits their nanofabrication until 2018. The current methods are restricted to top-down laser-based techniques limiting the periodicity along the z-axis to 10 μ m $10 \text{ } \mu \text{m} $ . The first bottom-up fabricated 3D NPhC is demonstrated in sol–gel-derived barium titanate by soft-nanoimprint lithography: a woodpile with eight layers and periodicities of 1 μ m $1 \text{ } \mu \text{m} $ ( x y $x y$ -plane) and 300 nm $300 \textrm{ } \textrm{ } \textrm{ } \text{nm}$ (z-plane). The surface areas exceed 5.3 × 10 4 μ m 2 $5.3 \times \left(10\right)^{4} \mu \left(\text{m}\right)^{2} $ , which is two orders of magnitude larger than the state-of-the-art. This study is expected to initiate bottom-up fabrication of 3D NPhCs with a supremely strong and versatile nonlinear response.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
2.70%
发文量
0
期刊最新文献
Issue Information Chemically Engineered GaN Thin Films for Light-Stimulated Artificial Synapses Complete Mode Spectrum Decomposition of Complex-Structured Light by Computer-Generated Holography Chemically Engineered GaN Thin Films for Light-Stimulated Artificial Synapses Masthead
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1