Yi-Jun Jen, Jia-Ming Wang, Bo-Wei Zhan, Ching-Wei Yu, Qian-Hao Li
{"title":"银纳米花金属表面的不对称吸收和表面增强拉曼散射增强作用","authors":"Yi-Jun Jen, Jia-Ming Wang, Bo-Wei Zhan, Ching-Wei Yu, Qian-Hao Li","doi":"10.1002/adpr.202400066","DOIUrl":null,"url":null,"abstract":"<p>A metasurface composed of silver nanoflower arrays, which exhibit asymmetrical absorption and surface-enhanced Raman scattering (SERS) due to hybrid plasmonic effects, is reported. The silver nanoflowers are fabricated by oblique deposition of silver on a polymer nanohole array on a glass substrate, forming petal-like semicontinuous thin films on the inner walls of the holes. Depending on the deposition angle, three- or five-petal nanoflowers are obtained. The nanoflower arrays show strong reflection from the air side and broadband and wide-angle absorption from the glass side, as a result of transmission surface plasmon resonance and localized surface plasmon resonance, respectively. The three-petal structure, which absorbs most of the incident light from the glass side, induces a localized enhancement of electric field in the center of each nanohole, providing a high-sensitivity SERS substrate. The SERS performance of the metasurface by direct measurement and near-field simulation is demonstrated.</p>","PeriodicalId":7263,"journal":{"name":"Advanced Photonics Research","volume":"5 12","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400066","citationCount":"0","resultStr":"{\"title\":\"Asymmetrical Absorption and Surface-Enhanced Raman Scattering Enhancement by Silver Nanoflower Metasurface\",\"authors\":\"Yi-Jun Jen, Jia-Ming Wang, Bo-Wei Zhan, Ching-Wei Yu, Qian-Hao Li\",\"doi\":\"10.1002/adpr.202400066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A metasurface composed of silver nanoflower arrays, which exhibit asymmetrical absorption and surface-enhanced Raman scattering (SERS) due to hybrid plasmonic effects, is reported. The silver nanoflowers are fabricated by oblique deposition of silver on a polymer nanohole array on a glass substrate, forming petal-like semicontinuous thin films on the inner walls of the holes. Depending on the deposition angle, three- or five-petal nanoflowers are obtained. The nanoflower arrays show strong reflection from the air side and broadband and wide-angle absorption from the glass side, as a result of transmission surface plasmon resonance and localized surface plasmon resonance, respectively. The three-petal structure, which absorbs most of the incident light from the glass side, induces a localized enhancement of electric field in the center of each nanohole, providing a high-sensitivity SERS substrate. The SERS performance of the metasurface by direct measurement and near-field simulation is demonstrated.</p>\",\"PeriodicalId\":7263,\"journal\":{\"name\":\"Advanced Photonics Research\",\"volume\":\"5 12\",\"pages\":\"\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2024-06-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adpr.202400066\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Photonics Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400066\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Photonics Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adpr.202400066","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Asymmetrical Absorption and Surface-Enhanced Raman Scattering Enhancement by Silver Nanoflower Metasurface
A metasurface composed of silver nanoflower arrays, which exhibit asymmetrical absorption and surface-enhanced Raman scattering (SERS) due to hybrid plasmonic effects, is reported. The silver nanoflowers are fabricated by oblique deposition of silver on a polymer nanohole array on a glass substrate, forming petal-like semicontinuous thin films on the inner walls of the holes. Depending on the deposition angle, three- or five-petal nanoflowers are obtained. The nanoflower arrays show strong reflection from the air side and broadband and wide-angle absorption from the glass side, as a result of transmission surface plasmon resonance and localized surface plasmon resonance, respectively. The three-petal structure, which absorbs most of the incident light from the glass side, induces a localized enhancement of electric field in the center of each nanohole, providing a high-sensitivity SERS substrate. The SERS performance of the metasurface by direct measurement and near-field simulation is demonstrated.