Co修饰pr0.6 sm0.4 mn103钙钛矿增强非自由基途径高效去除罗丹明B

IF 6.5 3区 材料科学 Q2 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Advanced Sustainable Systems Pub Date : 2024-11-24 DOI:10.1002/adsu.202400419
Dongxu Han, Zhi Song, Boxia Liu, Bofei Liu, Xiayan Zhang, Jialu Liu, Yeqiong Huang, Chuhan Xing
{"title":"Co修饰pr0.6 sm0.4 mn103钙钛矿增强非自由基途径高效去除罗丹明B","authors":"Dongxu Han,&nbsp;Zhi Song,&nbsp;Boxia Liu,&nbsp;Bofei Liu,&nbsp;Xiayan Zhang,&nbsp;Jialu Liu,&nbsp;Yeqiong Huang,&nbsp;Chuhan Xing","doi":"10.1002/adsu.202400419","DOIUrl":null,"url":null,"abstract":"<p>Because of its excellent catalytic activity and stability, perovskite materials are widely used in advanced oxidation processes to remove refractory organic pollutants. In this study, a series of catalysts Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub> (x = 0, 0.2, 0.4, 0.5, 0.6,0.8 and 1) with limited range effect are prepared by sol–gel method with the regulation strategy of injecting active metal Co at B site in the crystal lattice of perovskite catalyst Pr<sub>0.6</sub>Sm<sub>0.4</sub>MnO<sub>3</sub>. Under the optimal conditions, the Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3</sub>/PMS/RhB system showed superior catalytic performance, and the removal rate of Rhodamine B (100 mg L<sup>−1</sup>) is close to 100% within 40 min. In addition, the Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3</sub> catalyst has a wider pH (2-10) tolerance range and still has outstanding catalytic properties after multiple cycle tests. The quenching experiment and EPR test confirmed that a variety of active species are produced in the system, and the singlet oxygen as the leading path of a variety of active substances assisted to promote the efficient degradation of Rhodamine B in wastewater. This study provides a new reaction system and regulatory strategy of active structural sites for the design of Fenton-like catalytic systems based on novel perovskite oxides.</p>","PeriodicalId":7294,"journal":{"name":"Advanced Sustainable Systems","volume":"8 12","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Co Modified Pr0.6Sm0.4Mn1O3 Perovskite Enhances the Non-Radical Pathway for Efficient Removal of Rhodamine B\",\"authors\":\"Dongxu Han,&nbsp;Zhi Song,&nbsp;Boxia Liu,&nbsp;Bofei Liu,&nbsp;Xiayan Zhang,&nbsp;Jialu Liu,&nbsp;Yeqiong Huang,&nbsp;Chuhan Xing\",\"doi\":\"10.1002/adsu.202400419\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Because of its excellent catalytic activity and stability, perovskite materials are widely used in advanced oxidation processes to remove refractory organic pollutants. In this study, a series of catalysts Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>x</sub>Mn<sub>1-x</sub>O<sub>3</sub> (x = 0, 0.2, 0.4, 0.5, 0.6,0.8 and 1) with limited range effect are prepared by sol–gel method with the regulation strategy of injecting active metal Co at B site in the crystal lattice of perovskite catalyst Pr<sub>0.6</sub>Sm<sub>0.4</sub>MnO<sub>3</sub>. Under the optimal conditions, the Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3</sub>/PMS/RhB system showed superior catalytic performance, and the removal rate of Rhodamine B (100 mg L<sup>−1</sup>) is close to 100% within 40 min. In addition, the Pr<sub>0.6</sub>Sm<sub>0.4</sub>Co<sub>0.8</sub>Mn<sub>0.2</sub>O<sub>3</sub> catalyst has a wider pH (2-10) tolerance range and still has outstanding catalytic properties after multiple cycle tests. The quenching experiment and EPR test confirmed that a variety of active species are produced in the system, and the singlet oxygen as the leading path of a variety of active substances assisted to promote the efficient degradation of Rhodamine B in wastewater. This study provides a new reaction system and regulatory strategy of active structural sites for the design of Fenton-like catalytic systems based on novel perovskite oxides.</p>\",\"PeriodicalId\":7294,\"journal\":{\"name\":\"Advanced Sustainable Systems\",\"volume\":\"8 12\",\"pages\":\"\"},\"PeriodicalIF\":6.5000,\"publicationDate\":\"2024-11-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Sustainable Systems\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400419\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Sustainable Systems","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adsu.202400419","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

由于其优异的催化活性和稳定性,钙钛矿材料被广泛应用于高级氧化工艺中去除难降解的有机污染物。本研究以钙钛矿型催化剂Pr0.6Sm0.4MnO3的晶格B位注入活性金属Co为调控策略,采用溶胶-凝胶法制备了一系列具有有限范围效应的催化剂Pr0.6Sm0.4CoxMn1-xO3 (x = 0、0.2、0.4、0.5、0.6、0.8和1)。在最优条件下,Pr0.6Sm0.4Co0.8Mn0.2O3/PMS/RhB体系表现出优异的催化性能,在40 min内对罗丹明B (100 mg L−1)的去除率接近100%。此外,Pr0.6Sm0.4Co0.8Mn0.2O3催化剂具有更宽的pH(2-10)容忍范围,经多次循环试验仍具有优异的催化性能。猝灭实验和EPR测试证实,系统中产生多种活性物质,单重态氧作为多种活性物质的先导路径,有助于促进废水中罗丹明B的高效降解。本研究为基于新型钙钛矿氧化物的类芬顿催化体系的设计提供了新的反应体系和活性结构位点的调控策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Co Modified Pr0.6Sm0.4Mn1O3 Perovskite Enhances the Non-Radical Pathway for Efficient Removal of Rhodamine B

Because of its excellent catalytic activity and stability, perovskite materials are widely used in advanced oxidation processes to remove refractory organic pollutants. In this study, a series of catalysts Pr0.6Sm0.4CoxMn1-xO3 (x = 0, 0.2, 0.4, 0.5, 0.6,0.8 and 1) with limited range effect are prepared by sol–gel method with the regulation strategy of injecting active metal Co at B site in the crystal lattice of perovskite catalyst Pr0.6Sm0.4MnO3. Under the optimal conditions, the Pr0.6Sm0.4Co0.8Mn0.2O3/PMS/RhB system showed superior catalytic performance, and the removal rate of Rhodamine B (100 mg L−1) is close to 100% within 40 min. In addition, the Pr0.6Sm0.4Co0.8Mn0.2O3 catalyst has a wider pH (2-10) tolerance range and still has outstanding catalytic properties after multiple cycle tests. The quenching experiment and EPR test confirmed that a variety of active species are produced in the system, and the singlet oxygen as the leading path of a variety of active substances assisted to promote the efficient degradation of Rhodamine B in wastewater. This study provides a new reaction system and regulatory strategy of active structural sites for the design of Fenton-like catalytic systems based on novel perovskite oxides.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Sustainable Systems
Advanced Sustainable Systems Environmental Science-General Environmental Science
CiteScore
10.80
自引率
4.20%
发文量
186
期刊介绍: Advanced Sustainable Systems, a part of the esteemed Advanced portfolio, serves as an interdisciplinary sustainability science journal. It focuses on impactful research in the advancement of sustainable, efficient, and less wasteful systems and technologies. Aligned with the UN's Sustainable Development Goals, the journal bridges knowledge gaps between fundamental research, implementation, and policy-making. Covering diverse topics such as climate change, food sustainability, environmental science, renewable energy, water, urban development, and socio-economic challenges, it contributes to the understanding and promotion of sustainable systems.
期刊最新文献
Issue Information Straightforward Synthesis Methodology for Obtaining Excellent ORR Electrocatalysts From Biomass Residues Through a One Pot-High Temperature Treatment Approach (Adv. Sustainable Syst. 1/2025) Phenothiazine-Modified PTAA Hole Transporting Materials for Flexible Perovskite Solar Cells: A Trade-Off Between Performance and Sustainability (Adv. Sustainable Syst. 1/2025) Advanced Sustainable Systems in the New Era: From Renewable Energy and Environmental Management to Sustainable Agriculture, Urban and Socio-Economic Developments Simultaneous Triboelectric and Mechanoluminescence Sensing Toward Self-Powered Applications (Adv. Sustainable Syst. 12/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1