用于胶质母细胞瘤光动力和光依赖疗法的自组装 Verteporfin 纳米粒子

IF 4 Q2 ENGINEERING, BIOMEDICAL Advanced Nanobiomed Research Pub Date : 2024-09-28 DOI:10.1002/anbr.202400098
John A. Quinlan, Kaylin Baumiller, Anandita Gaur, Wen-An Chiou, Robert W. Robey, Michael M. Gottesman, Huang-Chiao Huang
{"title":"用于胶质母细胞瘤光动力和光依赖疗法的自组装 Verteporfin 纳米粒子","authors":"John A. Quinlan,&nbsp;Kaylin Baumiller,&nbsp;Anandita Gaur,&nbsp;Wen-An Chiou,&nbsp;Robert W. Robey,&nbsp;Michael M. Gottesman,&nbsp;Huang-Chiao Huang","doi":"10.1002/anbr.202400098","DOIUrl":null,"url":null,"abstract":"<p>\nVerteporfin (VP) has been used for photodynamic therapy (PDT) for over 20 years, and new applications have brought it back into the spotlight. VP is hydrophobic and requires lipid carriers for clinical delivery as Visudyne. A nanosuspension of VP, termed NanoVP, that requires no carriers is developed, permitting delivery of VP alone in an aqueous solution. NanoVP is produced by solvent–antisolvent precipitation, with dimethyl sulfoxide as the preferable solvent of several screened. The initial formulation has a hydrodynamic diameter of 104 ± 6.0 nm, concentration of 133 ± 10 μ<span>m</span>, polydispersity index (Pdi) of 0.12 ± 0.01, and zeta potential of −22.0 ± 0.93 mV. Seeking a concentration &gt;500 μ<span>m</span>, a zeta potential &lt;−10 mV, a diameter &lt;64 nm, and a Pdi &lt; 0.2, eight synthesis parameters are probed, identifying three that modified nanoparticle diameter and three that modified nanoparticle dispersity. The diameter is tuned fourfold from 49.0 ± 4.4 to 195 ± 7.1 nm, and the solution concentration is increased by 6.3-fold to 838 ± 45.0 μ<span>m</span>. Finally, the bioavailability and anticancer capacity of NanoVP in glioblastoma are evaluated. In all, this provides a framework for the modification of amorphous nanoparticle properties and a new formulation for clinical use of VP.</p>","PeriodicalId":29975,"journal":{"name":"Advanced Nanobiomed Research","volume":"4 12","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-09-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400098","citationCount":"0","resultStr":"{\"title\":\"Self-Assembled Verteporfin Nanoparticles for Photodynamic and Light-Independent Therapy in Glioblastoma\",\"authors\":\"John A. Quinlan,&nbsp;Kaylin Baumiller,&nbsp;Anandita Gaur,&nbsp;Wen-An Chiou,&nbsp;Robert W. Robey,&nbsp;Michael M. Gottesman,&nbsp;Huang-Chiao Huang\",\"doi\":\"10.1002/anbr.202400098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>\\nVerteporfin (VP) has been used for photodynamic therapy (PDT) for over 20 years, and new applications have brought it back into the spotlight. VP is hydrophobic and requires lipid carriers for clinical delivery as Visudyne. A nanosuspension of VP, termed NanoVP, that requires no carriers is developed, permitting delivery of VP alone in an aqueous solution. NanoVP is produced by solvent–antisolvent precipitation, with dimethyl sulfoxide as the preferable solvent of several screened. The initial formulation has a hydrodynamic diameter of 104 ± 6.0 nm, concentration of 133 ± 10 μ<span>m</span>, polydispersity index (Pdi) of 0.12 ± 0.01, and zeta potential of −22.0 ± 0.93 mV. Seeking a concentration &gt;500 μ<span>m</span>, a zeta potential &lt;−10 mV, a diameter &lt;64 nm, and a Pdi &lt; 0.2, eight synthesis parameters are probed, identifying three that modified nanoparticle diameter and three that modified nanoparticle dispersity. The diameter is tuned fourfold from 49.0 ± 4.4 to 195 ± 7.1 nm, and the solution concentration is increased by 6.3-fold to 838 ± 45.0 μ<span>m</span>. Finally, the bioavailability and anticancer capacity of NanoVP in glioblastoma are evaluated. In all, this provides a framework for the modification of amorphous nanoparticle properties and a new formulation for clinical use of VP.</p>\",\"PeriodicalId\":29975,\"journal\":{\"name\":\"Advanced Nanobiomed Research\",\"volume\":\"4 12\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-09-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/anbr.202400098\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Nanobiomed Research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400098\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Nanobiomed Research","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/anbr.202400098","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

维替波芬(VP)用于光动力治疗(PDT)已有20多年的历史,新的应用使其重新成为人们关注的焦点。VP是疏水性的,需要脂质载体作为Visudyne进行临床递送。开发了一种不需要载体的VP纳米悬浮液,称为NanoVP,允许VP单独在水溶液中递送。采用溶剂-反溶剂沉淀法制备纳米ovp,筛选出几种最佳溶剂为二甲亚砜。初始配方的水动力直径为104±6.0 nm,浓度为133±10 μm,多分散性指数(Pdi)为0.12±0.01,zeta电位为- 22.0±0.93 mV。在浓度>;500 μm, zeta电位<;−10 mV,直径<;64 nm, Pdi <; 0.2的条件下,研究了8个合成参数,确定了3个修饰纳米颗粒直径和3个修饰纳米颗粒分散性的参数。直径从49.0±4.4 nm增加到195±7.1 nm,增加了4倍,溶液浓度增加了6.3倍,达到838±45.0 μm。最后,对纳米ovp在胶质母细胞瘤中的生物利用度和抗癌能力进行了评价。总之,这为修饰非晶态纳米颗粒的性质和VP临床应用的新配方提供了一个框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Self-Assembled Verteporfin Nanoparticles for Photodynamic and Light-Independent Therapy in Glioblastoma

Verteporfin (VP) has been used for photodynamic therapy (PDT) for over 20 years, and new applications have brought it back into the spotlight. VP is hydrophobic and requires lipid carriers for clinical delivery as Visudyne. A nanosuspension of VP, termed NanoVP, that requires no carriers is developed, permitting delivery of VP alone in an aqueous solution. NanoVP is produced by solvent–antisolvent precipitation, with dimethyl sulfoxide as the preferable solvent of several screened. The initial formulation has a hydrodynamic diameter of 104 ± 6.0 nm, concentration of 133 ± 10 μm, polydispersity index (Pdi) of 0.12 ± 0.01, and zeta potential of −22.0 ± 0.93 mV. Seeking a concentration >500 μm, a zeta potential <−10 mV, a diameter <64 nm, and a Pdi < 0.2, eight synthesis parameters are probed, identifying three that modified nanoparticle diameter and three that modified nanoparticle dispersity. The diameter is tuned fourfold from 49.0 ± 4.4 to 195 ± 7.1 nm, and the solution concentration is increased by 6.3-fold to 838 ± 45.0 μm. Finally, the bioavailability and anticancer capacity of NanoVP in glioblastoma are evaluated. In all, this provides a framework for the modification of amorphous nanoparticle properties and a new formulation for clinical use of VP.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Nanobiomed Research
Advanced Nanobiomed Research nanomedicine, bioengineering and biomaterials-
CiteScore
5.00
自引率
5.90%
发文量
87
审稿时长
21 weeks
期刊介绍: Advanced NanoBiomed Research will provide an Open Access home for cutting-edge nanomedicine, bioengineering and biomaterials research aimed at improving human health. The journal will capture a broad spectrum of research from increasingly multi- and interdisciplinary fields of the traditional areas of biomedicine, bioengineering and health-related materials science as well as precision and personalized medicine, drug delivery, and artificial intelligence-driven health science. The scope of Advanced NanoBiomed Research will cover the following key subject areas: ▪ Nanomedicine and nanotechnology, with applications in drug and gene delivery, diagnostics, theranostics, photothermal and photodynamic therapy and multimodal imaging. ▪ Biomaterials, including hydrogels, 2D materials, biopolymers, composites, biodegradable materials, biohybrids and biomimetics (such as artificial cells, exosomes and extracellular vesicles), as well as all organic and inorganic materials for biomedical applications. ▪ Biointerfaces, such as anti-microbial surfaces and coatings, as well as interfaces for cellular engineering, immunoengineering and 3D cell culture. ▪ Biofabrication including (bio)inks and technologies, towards generation of functional tissues and organs. ▪ Tissue engineering and regenerative medicine, including scaffolds and scaffold-free approaches, for bone, ligament, muscle, skin, neural, cardiac tissue engineering and tissue vascularization. ▪ Devices for healthcare applications, disease modelling and treatment, such as diagnostics, lab-on-a-chip, organs-on-a-chip, bioMEMS, bioelectronics, wearables, actuators, soft robotics, and intelligent drug delivery systems. with a strong focus on applications of these fields, from bench-to-bedside, for treatment of all diseases and disorders, such as infectious, autoimmune, cardiovascular and metabolic diseases, neurological disorders and cancer; including pharmacology and toxicology studies.
期刊最新文献
Masthead Microfluidic Encapsulation of DNAs in Liquid Beads for Digital Loop-Mediated Isothermal Amplification Masthead Real-Time Nanoscale Bacterial Detection Utilizing a 1DZnO Optical Nanobiosensor Nanoarchitectonics for Biomedical Research: Post-Nanotechnology Materials Approach for Bio-Active Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1