在温带云和海洋的驱动下,南亚季风降雨强劲增加

IF 8.5 1区 地球科学 Q1 METEOROLOGY & ATMOSPHERIC SCIENCES npj Climate and Atmospheric Science Pub Date : 2024-12-21 DOI:10.1038/s41612-024-00843-7
Yong-Jhih Chen, Yen-Ting Hwang, Jian Lu
{"title":"在温带云和海洋的驱动下,南亚季风降雨强劲增加","authors":"Yong-Jhih Chen, Yen-Ting Hwang, Jian Lu","doi":"10.1038/s41612-024-00843-7","DOIUrl":null,"url":null,"abstract":"The responses of South Asian Monsoon (SAM) circulation under global warming are known to be highly uncertain, leading to the widespread of SAM rainfall projections among models. Here, we show that the uncertain SAM circulation in Coupled Model Intercomparison Project Phase 6 models consists of two robust components that partly offset each other: a weakening component linked to a global thermodynamic constraint and a northward shift component understood through a regional 2D energetic perspective. We further attribute the robust northward shift of SAM circulation to positive cloud feedback over the Eurasia Continent and heat uptake in the Southern Ocean. A set of climate model simulations supports the finding that SAM rainfall increase is primarily due to the northward shift of circulation driven by extratropical processes. This energetic perspective opens new avenues for predicting monsoon rainfall by connecting circulation changes to radiative forcing, feedbacks, and ocean heat uptake.","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":" ","pages":"1-10"},"PeriodicalIF":8.5000,"publicationDate":"2024-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41612-024-00843-7.pdf","citationCount":"0","resultStr":"{\"title\":\"Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean\",\"authors\":\"Yong-Jhih Chen, Yen-Ting Hwang, Jian Lu\",\"doi\":\"10.1038/s41612-024-00843-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The responses of South Asian Monsoon (SAM) circulation under global warming are known to be highly uncertain, leading to the widespread of SAM rainfall projections among models. Here, we show that the uncertain SAM circulation in Coupled Model Intercomparison Project Phase 6 models consists of two robust components that partly offset each other: a weakening component linked to a global thermodynamic constraint and a northward shift component understood through a regional 2D energetic perspective. We further attribute the robust northward shift of SAM circulation to positive cloud feedback over the Eurasia Continent and heat uptake in the Southern Ocean. A set of climate model simulations supports the finding that SAM rainfall increase is primarily due to the northward shift of circulation driven by extratropical processes. This energetic perspective opens new avenues for predicting monsoon rainfall by connecting circulation changes to radiative forcing, feedbacks, and ocean heat uptake.\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\" \",\"pages\":\"1-10\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2024-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s41612-024-00843-7.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://www.nature.com/articles/s41612-024-00843-7\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://www.nature.com/articles/s41612-024-00843-7","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

南亚季风环流在全球变暖背景下的响应具有高度的不确定性,这导致了南亚季风降水预估在模式中的广泛应用。本文表明,耦合模式比对项目第6阶段模式中的不确定SAM环流由两个相互抵消的强大分量组成:一个与全球热力学约束相关的减弱分量和一个通过区域二维能量视角理解的向北移动分量。我们进一步将SAM环流的强劲北移归因于欧亚大陆上空的正云反馈和南大洋的热吸收。一组气候模式模拟结果支持了SAM降水增加的主要原因是温带过程驱动的环流向北移动。这种能量视角通过将环流变化与辐射强迫、反馈和海洋热吸收联系起来,为预测季风降雨开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean
The responses of South Asian Monsoon (SAM) circulation under global warming are known to be highly uncertain, leading to the widespread of SAM rainfall projections among models. Here, we show that the uncertain SAM circulation in Coupled Model Intercomparison Project Phase 6 models consists of two robust components that partly offset each other: a weakening component linked to a global thermodynamic constraint and a northward shift component understood through a regional 2D energetic perspective. We further attribute the robust northward shift of SAM circulation to positive cloud feedback over the Eurasia Continent and heat uptake in the Southern Ocean. A set of climate model simulations supports the finding that SAM rainfall increase is primarily due to the northward shift of circulation driven by extratropical processes. This energetic perspective opens new avenues for predicting monsoon rainfall by connecting circulation changes to radiative forcing, feedbacks, and ocean heat uptake.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
npj Climate and Atmospheric Science
npj Climate and Atmospheric Science Earth and Planetary Sciences-Atmospheric Science
CiteScore
8.80
自引率
3.30%
发文量
87
审稿时长
21 weeks
期刊介绍: npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols. The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.
期刊最新文献
Unusual and persistent easterlies restrained the 2023/24 El Niño development after a triple-dip La Niña Shifted dominant flood drivers of an alpine glacierized catchment in the Tianshan region revealed through interpretable deep learning High prediction skill of decadal tropical cyclone variability in the North Atlantic and East Pacific in the met office decadal prediction system DePreSys4 Multifaceted changes in water availability with a warmer climate Vertical and spatial differences in ozone formation sensitivities under different ozone pollution levels in eastern Chinese cities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1