球形中子偏振测量法在 YBaCuFeO5 单晶中发现高温磁螺旋的证据

IF 7.5 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY Communications Materials Pub Date : 2024-12-19 DOI:10.1038/s43246-024-00710-1
Arnau Romaguera, Oscar Fabelo, Navid Qureshi, J. Alberto Rodríguez-Velamazán, José Luis García-Muñoz
{"title":"球形中子偏振测量法在 YBaCuFeO5 单晶中发现高温磁螺旋的证据","authors":"Arnau Romaguera, Oscar Fabelo, Navid Qureshi, J. Alberto Rodríguez-Velamazán, José Luis García-Muñoz","doi":"10.1038/s43246-024-00710-1","DOIUrl":null,"url":null,"abstract":"The low ordering temperature of most non-collinear spiral magnets critically limits their implementation in devices. The layered perovskites RBaCuFeO5 are a rare case of frustrated oxide family that has raised great expectations as promising high-temperature spiral magnets and spin-driven multiferroic candidates. Though a non-conventional mechanism of ‘spiral order by disorder’ could account for the extraordinary thermal stability of their presumed spiral order, such order was alleged on the basis of non-conclusive neutron data on powder samples. Thus far, it has not yet received support from single-crystal studies able to lift the ambiguities of powder data. Here, a YBaCuFeO5 crystal has been grown with enough Cu/Fe disorder to stabilize the incommensurate magnetic phase up to TS ≈ 200 K. Utilizing spherical neutron polarimetry and single-crystal neutron diffraction, we unveil the features of its magnetic structures, demonstrating the non-collinear chiral nature of the magnetic domains in the singular incommensurate phase. It is thus finally proved that such phase is spiral in our crystal, and therefore also in those compositions of this perovskite family where TS values well above room temperature have been reported. Yet, this study also illustrates critical features of relevance to the search for high-temperature magnetoelectric response induced by the spiral phase. While promising for spintronics, most non-collinear spiral magnets have low ordering temperatures which limit their implementation in devices. Here, spherical neutron polarimetry and single-crystal neutron diffraction data demonstrate the non-collinear chiral nature of magnetic order in YBaCuFeO5 single crystals up to 200 K.","PeriodicalId":10589,"journal":{"name":"Communications Materials","volume":" ","pages":"1-13"},"PeriodicalIF":7.5000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s43246-024-00710-1.pdf","citationCount":"0","resultStr":"{\"title\":\"Evidence of high-temperature magnetic spiral in YBaCuFeO5 single-crystal by spherical neutron polarimetry\",\"authors\":\"Arnau Romaguera, Oscar Fabelo, Navid Qureshi, J. Alberto Rodríguez-Velamazán, José Luis García-Muñoz\",\"doi\":\"10.1038/s43246-024-00710-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The low ordering temperature of most non-collinear spiral magnets critically limits their implementation in devices. The layered perovskites RBaCuFeO5 are a rare case of frustrated oxide family that has raised great expectations as promising high-temperature spiral magnets and spin-driven multiferroic candidates. Though a non-conventional mechanism of ‘spiral order by disorder’ could account for the extraordinary thermal stability of their presumed spiral order, such order was alleged on the basis of non-conclusive neutron data on powder samples. Thus far, it has not yet received support from single-crystal studies able to lift the ambiguities of powder data. Here, a YBaCuFeO5 crystal has been grown with enough Cu/Fe disorder to stabilize the incommensurate magnetic phase up to TS ≈ 200 K. Utilizing spherical neutron polarimetry and single-crystal neutron diffraction, we unveil the features of its magnetic structures, demonstrating the non-collinear chiral nature of the magnetic domains in the singular incommensurate phase. It is thus finally proved that such phase is spiral in our crystal, and therefore also in those compositions of this perovskite family where TS values well above room temperature have been reported. Yet, this study also illustrates critical features of relevance to the search for high-temperature magnetoelectric response induced by the spiral phase. While promising for spintronics, most non-collinear spiral magnets have low ordering temperatures which limit their implementation in devices. Here, spherical neutron polarimetry and single-crystal neutron diffraction data demonstrate the non-collinear chiral nature of magnetic order in YBaCuFeO5 single crystals up to 200 K.\",\"PeriodicalId\":10589,\"journal\":{\"name\":\"Communications Materials\",\"volume\":\" \",\"pages\":\"1-13\"},\"PeriodicalIF\":7.5000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s43246-024-00710-1.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.nature.com/articles/s43246-024-00710-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Materials","FirstCategoryId":"1085","ListUrlMain":"https://www.nature.com/articles/s43246-024-00710-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

大多数非共线螺旋磁体的低有序温度严重限制了它们在器件中的实现。层状钙钛矿RBaCuFeO5是一种罕见的受挫氧化物家族,作为有前途的高温螺旋磁体和自旋驱动多铁性候选材料,引起了人们的极大期望。尽管一种非传统的“无序的螺旋有序”机制可以解释它们假定的螺旋有序的非凡热稳定性,但这种秩序是基于粉末样品的非结论性中子数据而提出的。到目前为止,它还没有得到能够消除粉末数据模糊性的单晶研究的支持。在这里,YBaCuFeO5晶体生长具有足够的Cu/Fe无序以稳定不相称的磁相高达TS≈200 K。利用球中子偏振和单晶中子衍射,揭示了其磁结构的特征,证明了奇异不相称相磁畴的非共线手性。因此,最终证明了这种相在我们的晶体中是螺旋状的,因此也在这些钙钛矿家族的成分中,TS值远高于室温。然而,这项研究也说明了与寻找由螺旋相引起的高温磁电响应相关的关键特征。虽然自旋电子学很有前途,但大多数非共线螺旋磁体的有序温度较低,这限制了它们在器件中的实现。在这里,球中子偏振和单晶中子衍射数据证明了YBaCuFeO5单晶中磁序的非共线手性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evidence of high-temperature magnetic spiral in YBaCuFeO5 single-crystal by spherical neutron polarimetry
The low ordering temperature of most non-collinear spiral magnets critically limits their implementation in devices. The layered perovskites RBaCuFeO5 are a rare case of frustrated oxide family that has raised great expectations as promising high-temperature spiral magnets and spin-driven multiferroic candidates. Though a non-conventional mechanism of ‘spiral order by disorder’ could account for the extraordinary thermal stability of their presumed spiral order, such order was alleged on the basis of non-conclusive neutron data on powder samples. Thus far, it has not yet received support from single-crystal studies able to lift the ambiguities of powder data. Here, a YBaCuFeO5 crystal has been grown with enough Cu/Fe disorder to stabilize the incommensurate magnetic phase up to TS ≈ 200 K. Utilizing spherical neutron polarimetry and single-crystal neutron diffraction, we unveil the features of its magnetic structures, demonstrating the non-collinear chiral nature of the magnetic domains in the singular incommensurate phase. It is thus finally proved that such phase is spiral in our crystal, and therefore also in those compositions of this perovskite family where TS values well above room temperature have been reported. Yet, this study also illustrates critical features of relevance to the search for high-temperature magnetoelectric response induced by the spiral phase. While promising for spintronics, most non-collinear spiral magnets have low ordering temperatures which limit their implementation in devices. Here, spherical neutron polarimetry and single-crystal neutron diffraction data demonstrate the non-collinear chiral nature of magnetic order in YBaCuFeO5 single crystals up to 200 K.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Communications Materials
Communications Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
12.10
自引率
1.30%
发文量
85
审稿时长
17 weeks
期刊介绍: Communications Materials, a selective open access journal within Nature Portfolio, is dedicated to publishing top-tier research, reviews, and commentary across all facets of materials science. The journal showcases significant advancements in specialized research areas, encompassing both fundamental and applied studies. Serving as an open access option for materials sciences, Communications Materials applies less stringent criteria for impact and significance compared to Nature-branded journals, including Nature Communications.
期刊最新文献
Device-assisted strategies for drug delivery across the blood-brain barrier to treat glioblastoma. Discovery of giant unit-cell super-structure in the infinite-layer nickelate PrNiO2+x. Enhanced energy storage in relaxor (1-x)Bi0.5Na0.5TiO3-xBaZryTi1-yO3 thin films by morphotropic phase boundary engineering. Regular red-green-blue InGaN quantum wells with In content up to 40% grown on InGaN nanopyramids Grain boundary cracks patching and defect dual passivation with ammonium formate for high-efficiency triple-cation perovskite solar cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1