{"title":"丝状光漏波产生的高能可调紫外线脉冲","authors":"Litong Xu, Tingting Xi","doi":"10.1038/s42005-024-01910-4","DOIUrl":null,"url":null,"abstract":"Ultraviolet pulses could open up new opportunities for the study of strong-field physics and ultrafast science. However, the existing methods for generating ultraviolet pulses face difficulties in fulfilling the twofold requirements of high energy and wavelength tunability simultaneously. Here, we theoretically demonstrate the generation of high-energy and wavelength tunable ultraviolet pulses in preformed gas-plasma channels via the leaky wave emission. The output ultraviolet pulse has a tunable wavelength ranging from 91 nm to 430 nm, and an energy level up to sub-mJ. Such a high-energy tunable ultraviolet light source may provide promising opportunities for characterization of ultrafast phenomena, and also an important driving source for the generation of high-energy attosecond pulses. High-energy ultraviolet pulses serve as unique light sources for strong-field physics and ultrafast science. The authors theoretically demonstrate the generation of ultraviolet pulses with sub-mJ level energy via optical leaky wave in filamentation, where preformed gasplasma channels are used to provide adjustable dispersion conditions that enable a widely tunable wavelength range of the ultraviolet pulses.","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":" ","pages":"1-8"},"PeriodicalIF":5.4000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s42005-024-01910-4.pdf","citationCount":"0","resultStr":"{\"title\":\"High-energy tunable ultraviolet pulses generated by optical leaky wave in filamentation\",\"authors\":\"Litong Xu, Tingting Xi\",\"doi\":\"10.1038/s42005-024-01910-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ultraviolet pulses could open up new opportunities for the study of strong-field physics and ultrafast science. However, the existing methods for generating ultraviolet pulses face difficulties in fulfilling the twofold requirements of high energy and wavelength tunability simultaneously. Here, we theoretically demonstrate the generation of high-energy and wavelength tunable ultraviolet pulses in preformed gas-plasma channels via the leaky wave emission. The output ultraviolet pulse has a tunable wavelength ranging from 91 nm to 430 nm, and an energy level up to sub-mJ. Such a high-energy tunable ultraviolet light source may provide promising opportunities for characterization of ultrafast phenomena, and also an important driving source for the generation of high-energy attosecond pulses. High-energy ultraviolet pulses serve as unique light sources for strong-field physics and ultrafast science. The authors theoretically demonstrate the generation of ultraviolet pulses with sub-mJ level energy via optical leaky wave in filamentation, where preformed gasplasma channels are used to provide adjustable dispersion conditions that enable a widely tunable wavelength range of the ultraviolet pulses.\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\" \",\"pages\":\"1-8\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.nature.com/articles/s42005-024-01910-4.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://www.nature.com/articles/s42005-024-01910-4\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://www.nature.com/articles/s42005-024-01910-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
High-energy tunable ultraviolet pulses generated by optical leaky wave in filamentation
Ultraviolet pulses could open up new opportunities for the study of strong-field physics and ultrafast science. However, the existing methods for generating ultraviolet pulses face difficulties in fulfilling the twofold requirements of high energy and wavelength tunability simultaneously. Here, we theoretically demonstrate the generation of high-energy and wavelength tunable ultraviolet pulses in preformed gas-plasma channels via the leaky wave emission. The output ultraviolet pulse has a tunable wavelength ranging from 91 nm to 430 nm, and an energy level up to sub-mJ. Such a high-energy tunable ultraviolet light source may provide promising opportunities for characterization of ultrafast phenomena, and also an important driving source for the generation of high-energy attosecond pulses. High-energy ultraviolet pulses serve as unique light sources for strong-field physics and ultrafast science. The authors theoretically demonstrate the generation of ultraviolet pulses with sub-mJ level energy via optical leaky wave in filamentation, where preformed gasplasma channels are used to provide adjustable dispersion conditions that enable a widely tunable wavelength range of the ultraviolet pulses.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.