老化和年轻骨髓间充质干细胞分泌的细胞外小泡在骨关节炎发病机制中的治疗潜力比较分析》(Comparative Analysis of Therapeutential Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis)。

IF 5.9 1区 生物学 Q2 CELL BIOLOGY Cell Proliferation Pub Date : 2024-12-20 DOI:10.1111/cpr.13776
Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam
{"title":"老化和年轻骨髓间充质干细胞分泌的细胞外小泡在骨关节炎发病机制中的治疗潜力比较分析》(Comparative Analysis of Therapeutential Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis)。","authors":"Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam","doi":"10.1111/cpr.13776","DOIUrl":null,"url":null,"abstract":"<p><p>Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13776"},"PeriodicalIF":5.9000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis.\",\"authors\":\"Shital Wakale, Yang Chen, Antonia Rujia Sun, Chamikara Liyanage, Jennifer Gunter, Jyotsna Batra, Ross Crawford, Hongxun Sang, Indira Prasadam\",\"doi\":\"10.1111/cpr.13776\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.</p>\",\"PeriodicalId\":9760,\"journal\":{\"name\":\"Cell Proliferation\",\"volume\":\" \",\"pages\":\"e13776\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell Proliferation\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/cpr.13776\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell Proliferation","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/cpr.13776","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

骨关节炎(OA)是一种关节疾病,由于老龄化和肥胖,给全球医疗保健带来了负担。最近的研究表明,来自骨髓间充质干细胞(BMSCs)的细胞外囊泡(EVs)有助于关节稳态和OA管理。然而,供体年龄对骨髓间充质干细胞衍生的EV疗效的影响仍未得到充分探讨。在这项研究中,我们研究了幼年(2月龄)骨髓间充质干细胞的EV缓解OA的效果,并将其与老年(27月龄)骨髓间充质干细胞的EV进行了比较。该研究在小鼠膝关节上使用内侧半月板不稳定(DMM)手术来诱导加速OA。观察EV治疗后软骨退变标志物和衰老标志物的表达水平。在炎症反应下,EVs对软骨细胞的治疗作用也被评估。尽管具有相似的形态学,但来自年轻BMSCs的ev通过激活PTEN通路,同时抑制PI3K/AKT通路的上调,显着减少衰老和改善软骨保护,在体外证明比来自老年BMSCs的ev更有效。此外,在使用DMM的小鼠OA手术模型中,腹腔注射来自年轻供体的ev可通过保留软骨和减少滑膜炎来显著缓解OA进展。这些发现强调,供体年龄是骨髓间充质干细胞衍生的ev用于OA治疗的关键决定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Comparative Analysis of the Therapeutic Potential of Extracellular Vesicles Secreted by Aged and Young Bone Marrow-Derived Mesenchymal Stem Cells in Osteoarthritis Pathogenesis.

Osteoarthritis (OA), a joint disease, burdens global healthcare due to aging and obesity. Recent studies show that extracellular vesicles (EVs) from bone marrow-derived mesenchymal stem cells (BMSCs) contribute to joint homeostasis and OA management. However, the impact of donor age on BMSC-derived EV efficacy remains underexplored. In this study, we investigated EV efficacy from young BMSCs (2-month-old) in mitigating OA, contrasting them with EVs from aged BMSCs (27-month-old). The study used destabilisation of the medial meniscus (DMM) surgery on mouse knee joints to induce accelerated OA. Cartilage degeneration markers and senescence markers' expression levels were investigated in response to EV treatment. The therapeutic impact of EVs on chondrocytes under inflammatory responses was also evaluated. Despite having similar morphologies, EVs from young BMSCs markedly decreased senescence and improved chondroprotection by activating the PTEN pathway while simultaneously suppressing the upregulation of the PI3K/AKT pathways, proving to be more effective than those from older BMSCs in vitro. Furthermore, intraperitoneal injections of EVs from young donors significantly mitigated OA progression by preserving cartilage and reducing synovitis in a surgical OA model using DMM in mice. These findings highlight that donor age as a critical determinant in the therapeutic potential of BMSC-derived EVs for clinical use in OA treatment.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Cell Proliferation
Cell Proliferation 生物-细胞生物学
CiteScore
14.80
自引率
2.40%
发文量
198
审稿时长
1 months
期刊介绍: Cell Proliferation Focus: Devoted to studies into all aspects of cell proliferation and differentiation. Covers normal and abnormal states. Explores control systems and mechanisms at various levels: inter- and intracellular, molecular, and genetic. Investigates modification by and interactions with chemical and physical agents. Includes mathematical modeling and the development of new techniques. Publication Content: Original research papers Invited review articles Book reviews Letters commenting on previously published papers and/or topics of general interest By organizing the information in this manner, readers can quickly grasp the scope, focus, and publication content of Cell Proliferation.
期刊最新文献
Regenerating Locus Coeruleus-Norepinephrine (LC-NE) Function: A Novel Approach for Neurodegenerative Diseases. DNA Damage Repair in Glioblastoma: A Novel Approach to Combat Drug Resistance. The S-Phase Arrest of Host Cells Caused by an Alpha-Herpesvirus Genome Replication Facilitates Viral Recruitment of RNA Polymerase II to Transcribe Viral Genes. Airway Basal Stem Cells Inflammatory Alterations in COVID-19 and Mitigation by Mesenchymal Stem Cells. The Interaction Between Vasculogenic Mimicry and the Immune System: Mechanistic Insights and Dual Exploration in Cancer Therapy.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1