腹主动脉瘤的运动学。

IF 2.4 3区 医学 Q3 BIOPHYSICS Journal of biomechanics Pub Date : 2025-01-01 DOI:10.1016/j.jbiomech.2024.112484
Mostafa Jamshidian, Adam Wittek, Saeideh Sekhavat, Karol Miller
{"title":"腹主动脉瘤的运动学。","authors":"Mostafa Jamshidian,&nbsp;Adam Wittek,&nbsp;Saeideh Sekhavat,&nbsp;Karol Miller","doi":"10.1016/j.jbiomech.2024.112484","DOIUrl":null,"url":null,"abstract":"<div><div>A search in Scopus within “Article title, Abstract, Keywords” unveils 2,444 documents focused on the biomechanics of Abdominal Aortic Aneurysm (AAA), mostly on AAA wall stress. Only 24 documents investigated AAA kinematics, an important topic that could potentially offer significant insights into the biomechanics of AAA. In this paper, we present an image-based approach for patient-specific, in vivo, and non-invasive AAA kinematic analysis using patient’s time-resolved 3D computed tomography angiography (4D-CTA) images, with an objective to measure wall displacement and strain during the cardiac cycle. Our approach relies on regularized deformable image registration for estimating wall displacement, estimation of the local wall strain as the ratio of its normal displacement to its local radius of curvature, and local surface fitting with non-deterministic outlier detection for estimating the wall radius of curvature. We verified our approach against synthetic ground truth image data created by warping a 3D-CTA image of AAA using a realistic displacement field obtained from a finite element biomechanical model. We applied our approach to assess AAA wall displacements and strains in ten patients. Our kinematic analysis results indicated that the 99th percentile of circumferential wall strain, among all patients, ranged from 2.62% to 5.54%, with an average of 4.45% and a standard deviation of 0.87%. We also observed that AAA wall strains are significantly lower than those of a healthy aorta. Our work demonstrates that the registration-based measurement of AAA wall displacements in the direction normal to the wall is sufficiently accurate to reliably estimate strain from these displacements.</div></div>","PeriodicalId":15168,"journal":{"name":"Journal of biomechanics","volume":"179 ","pages":"Article 112484"},"PeriodicalIF":2.4000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Kinematics of abdominal aortic Aneurysms\",\"authors\":\"Mostafa Jamshidian,&nbsp;Adam Wittek,&nbsp;Saeideh Sekhavat,&nbsp;Karol Miller\",\"doi\":\"10.1016/j.jbiomech.2024.112484\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>A search in Scopus within “Article title, Abstract, Keywords” unveils 2,444 documents focused on the biomechanics of Abdominal Aortic Aneurysm (AAA), mostly on AAA wall stress. Only 24 documents investigated AAA kinematics, an important topic that could potentially offer significant insights into the biomechanics of AAA. In this paper, we present an image-based approach for patient-specific, in vivo, and non-invasive AAA kinematic analysis using patient’s time-resolved 3D computed tomography angiography (4D-CTA) images, with an objective to measure wall displacement and strain during the cardiac cycle. Our approach relies on regularized deformable image registration for estimating wall displacement, estimation of the local wall strain as the ratio of its normal displacement to its local radius of curvature, and local surface fitting with non-deterministic outlier detection for estimating the wall radius of curvature. We verified our approach against synthetic ground truth image data created by warping a 3D-CTA image of AAA using a realistic displacement field obtained from a finite element biomechanical model. We applied our approach to assess AAA wall displacements and strains in ten patients. Our kinematic analysis results indicated that the 99th percentile of circumferential wall strain, among all patients, ranged from 2.62% to 5.54%, with an average of 4.45% and a standard deviation of 0.87%. We also observed that AAA wall strains are significantly lower than those of a healthy aorta. Our work demonstrates that the registration-based measurement of AAA wall displacements in the direction normal to the wall is sufficiently accurate to reliably estimate strain from these displacements.</div></div>\",\"PeriodicalId\":15168,\"journal\":{\"name\":\"Journal of biomechanics\",\"volume\":\"179 \",\"pages\":\"Article 112484\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of biomechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0021929024005633\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biomechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0021929024005633","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

在Scopus中搜索“文章标题,摘要,关键词”,可以找到2444篇关于腹主动脉瘤(AAA)生物力学的文献,其中大部分是关于AAA壁应力的。只有24篇文献研究了AAA的运动学,这是一个重要的主题,可能为AAA的生物力学提供重要的见解。在本文中,我们提出了一种基于图像的方法,用于患者特异性的、体内的、无创的AAA运动学分析,使用患者的时间分辨3D计算机断层血管造影(4D-CTA)图像,目的是测量心脏周期期间的壁位移和应变。我们的方法依赖于正则化的可变形图像配准来估计壁面位移,估计局部壁面应变作为其法向位移与局部曲率半径的比值,以及使用非确定性离群检测的局部表面拟合来估计壁面曲率半径。我们通过使用从有限元生物力学模型中获得的真实位移场对AAA的3D-CTA图像进行扭曲而生成的合成地面真实图像数据验证了我们的方法。我们应用我们的方法评估了10例患者的AAA壁位移和应变。我们的运动学分析结果显示,所有患者圆周壁应变的第99百分位范围为2.62% ~ 5.54%,平均值为4.45%,标准差为0.87%。我们还观察到,AAA的壁应变明显低于健康主动脉。我们的工作表明,基于配准的AAA墙在与墙垂直方向上的位移测量足够准确,可以可靠地估计这些位移的应变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Kinematics of abdominal aortic Aneurysms
A search in Scopus within “Article title, Abstract, Keywords” unveils 2,444 documents focused on the biomechanics of Abdominal Aortic Aneurysm (AAA), mostly on AAA wall stress. Only 24 documents investigated AAA kinematics, an important topic that could potentially offer significant insights into the biomechanics of AAA. In this paper, we present an image-based approach for patient-specific, in vivo, and non-invasive AAA kinematic analysis using patient’s time-resolved 3D computed tomography angiography (4D-CTA) images, with an objective to measure wall displacement and strain during the cardiac cycle. Our approach relies on regularized deformable image registration for estimating wall displacement, estimation of the local wall strain as the ratio of its normal displacement to its local radius of curvature, and local surface fitting with non-deterministic outlier detection for estimating the wall radius of curvature. We verified our approach against synthetic ground truth image data created by warping a 3D-CTA image of AAA using a realistic displacement field obtained from a finite element biomechanical model. We applied our approach to assess AAA wall displacements and strains in ten patients. Our kinematic analysis results indicated that the 99th percentile of circumferential wall strain, among all patients, ranged from 2.62% to 5.54%, with an average of 4.45% and a standard deviation of 0.87%. We also observed that AAA wall strains are significantly lower than those of a healthy aorta. Our work demonstrates that the registration-based measurement of AAA wall displacements in the direction normal to the wall is sufficiently accurate to reliably estimate strain from these displacements.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of biomechanics
Journal of biomechanics 生物-工程:生物医学
CiteScore
5.10
自引率
4.20%
发文量
345
审稿时长
1 months
期刊介绍: The Journal of Biomechanics publishes reports of original and substantial findings using the principles of mechanics to explore biological problems. Analytical, as well as experimental papers may be submitted, and the journal accepts original articles, surveys and perspective articles (usually by Editorial invitation only), book reviews and letters to the Editor. The criteria for acceptance of manuscripts include excellence, novelty, significance, clarity, conciseness and interest to the readership. Papers published in the journal may cover a wide range of topics in biomechanics, including, but not limited to: -Fundamental Topics - Biomechanics of the musculoskeletal, cardiovascular, and respiratory systems, mechanics of hard and soft tissues, biofluid mechanics, mechanics of prostheses and implant-tissue interfaces, mechanics of cells. -Cardiovascular and Respiratory Biomechanics - Mechanics of blood-flow, air-flow, mechanics of the soft tissues, flow-tissue or flow-prosthesis interactions. -Cell Biomechanics - Biomechanic analyses of cells, membranes and sub-cellular structures; the relationship of the mechanical environment to cell and tissue response. -Dental Biomechanics - Design and analysis of dental tissues and prostheses, mechanics of chewing. -Functional Tissue Engineering - The role of biomechanical factors in engineered tissue replacements and regenerative medicine. -Injury Biomechanics - Mechanics of impact and trauma, dynamics of man-machine interaction. -Molecular Biomechanics - Mechanical analyses of biomolecules. -Orthopedic Biomechanics - Mechanics of fracture and fracture fixation, mechanics of implants and implant fixation, mechanics of bones and joints, wear of natural and artificial joints. -Rehabilitation Biomechanics - Analyses of gait, mechanics of prosthetics and orthotics. -Sports Biomechanics - Mechanical analyses of sports performance.
期刊最新文献
Editorial Board Acute effects of isometric plantarflexion exercise on Achilles tendon non-uniform displacement Validation of OpenCap on lower extremity kinematics during functional tasks Load transfer between active and passive lumbar tissues and its implications in time-dependent EMG-assisted biomechanical modeling Morphological analysis of the median nerve in the carpal tunnel during wrist movements, finger pinching and palm loading
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1