Xiu Chen, Rongfeng Chen, Liufang Wen, Tongxue Qin, Yinlu Liao, Xing Tao, Zongxiang Yuan, Wudi Wei, Jinmiao Li, Youjin Huang, Wenfei Wei, Jie Liu, Jinming Su, Li Ye, Hao Liang, Junjun Jiang
{"title":"长非编码 RNA LINC02453 通过与 SEC13 结合调节病毒生产周期来抑制 HIV-1 复制","authors":"Xiu Chen, Rongfeng Chen, Liufang Wen, Tongxue Qin, Yinlu Liao, Xing Tao, Zongxiang Yuan, Wudi Wei, Jinmiao Li, Youjin Huang, Wenfei Wei, Jie Liu, Jinming Su, Li Ye, Hao Liang, Junjun Jiang","doi":"10.1002/jmv.70116","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs. Then, we conducted validation experiments at the population level, while cellular models of HIV-1 infection were constructed for functional experimental investigations in vitro. Subcellular localization of the identified lncRNA was determined, followed by an exploration of the specific regulatory mechanism underlying HIV resistance through some experiments, such as RNA pull-down, western blot and Hirt assays. LncRNA LINC02453 is highly expressed in HESN. Moreover, LINC02453 is identified as a novel lncRNA associated with heightened resistance to HIV-1. LINC02453 is predominantly localized in the nucleus and binds to SEC13, a component of the nuclear pore complex, leading to the inhibition of HIV-1 replication by regulating key processes such as late reverse transcription, nuclear import, and DNA integration. Our findings suggest that LINC02453 may serve as a prospective target for the development of innovative anti-HIV therapeutics.</p></div>","PeriodicalId":16354,"journal":{"name":"Journal of Medical Virology","volume":"96 12","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2024-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long Noncoding RNA LINC02453 Inhibits HIV-1 Replication by Binding With SEC13 to Regulate the Viral Productive Cycle\",\"authors\":\"Xiu Chen, Rongfeng Chen, Liufang Wen, Tongxue Qin, Yinlu Liao, Xing Tao, Zongxiang Yuan, Wudi Wei, Jinmiao Li, Youjin Huang, Wenfei Wei, Jie Liu, Jinming Su, Li Ye, Hao Liang, Junjun Jiang\",\"doi\":\"10.1002/jmv.70116\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n <p>Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs. Then, we conducted validation experiments at the population level, while cellular models of HIV-1 infection were constructed for functional experimental investigations in vitro. Subcellular localization of the identified lncRNA was determined, followed by an exploration of the specific regulatory mechanism underlying HIV resistance through some experiments, such as RNA pull-down, western blot and Hirt assays. LncRNA LINC02453 is highly expressed in HESN. Moreover, LINC02453 is identified as a novel lncRNA associated with heightened resistance to HIV-1. LINC02453 is predominantly localized in the nucleus and binds to SEC13, a component of the nuclear pore complex, leading to the inhibition of HIV-1 replication by regulating key processes such as late reverse transcription, nuclear import, and DNA integration. Our findings suggest that LINC02453 may serve as a prospective target for the development of innovative anti-HIV therapeutics.</p></div>\",\"PeriodicalId\":16354,\"journal\":{\"name\":\"Journal of Medical Virology\",\"volume\":\"96 12\",\"pages\":\"\"},\"PeriodicalIF\":6.8000,\"publicationDate\":\"2024-12-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Virology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70116\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VIROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Virology","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jmv.70116","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VIROLOGY","Score":null,"Total":0}
Long Noncoding RNA LINC02453 Inhibits HIV-1 Replication by Binding With SEC13 to Regulate the Viral Productive Cycle
Emerging evidence underscores the pivotal role of long noncoding RNAs (lncRNAs) as crucial regulators within the HIV life cycle. However, the precise functions and detailed mechanisms by which lncRNAs operate in HIV-1 highly exposed but persistently seronegative (HESN) individuals remain currently unknown. Through RNA sequencing analysis of the HESN individual and the matched control, we identified potential lncRNAs. Then, we conducted validation experiments at the population level, while cellular models of HIV-1 infection were constructed for functional experimental investigations in vitro. Subcellular localization of the identified lncRNA was determined, followed by an exploration of the specific regulatory mechanism underlying HIV resistance through some experiments, such as RNA pull-down, western blot and Hirt assays. LncRNA LINC02453 is highly expressed in HESN. Moreover, LINC02453 is identified as a novel lncRNA associated with heightened resistance to HIV-1. LINC02453 is predominantly localized in the nucleus and binds to SEC13, a component of the nuclear pore complex, leading to the inhibition of HIV-1 replication by regulating key processes such as late reverse transcription, nuclear import, and DNA integration. Our findings suggest that LINC02453 may serve as a prospective target for the development of innovative anti-HIV therapeutics.
期刊介绍:
The Journal of Medical Virology focuses on publishing original scientific papers on both basic and applied research related to viruses that affect humans. The journal publishes reports covering a wide range of topics, including the characterization, diagnosis, epidemiology, immunology, and pathogenesis of human virus infections. It also includes studies on virus morphology, genetics, replication, and interactions with host cells.
The intended readership of the journal includes virologists, microbiologists, immunologists, infectious disease specialists, diagnostic laboratory technologists, epidemiologists, hematologists, and cell biologists.
The Journal of Medical Virology is indexed and abstracted in various databases, including Abstracts in Anthropology (Sage), CABI, AgBiotech News & Information, National Agricultural Library, Biological Abstracts, Embase, Global Health, Web of Science, Veterinary Bulletin, and others.