Eun Jin Jang, Anbin Rhee, Soo-Kyung Cho, Keunbaik Lee
{"title":"用多元t-线性模型分析狼疮的纵向数据。","authors":"Eun Jin Jang, Anbin Rhee, Soo-Kyung Cho, Keunbaik Lee","doi":"10.1002/sim.10248","DOIUrl":null,"url":null,"abstract":"<p><p>Analysis of healthcare utilization, such as hospitalization duration and medical costs, is crucial for policymakers and doctors in experimental and epidemiological investigations. Herein, we examine the healthcare utilization data of patients with systemic lupus erythematosus (SLE). The characteristics of the SLE data were measured over a 10-year period with outliers. Multivariate linear models with multivariate normal error distributions are commonly used to evaluate long series of multivariate longitudinal data. However, when there are outliers or heavy tails in the data, such as those based on healthcare utilization, the assumption of multivariate normality may be too strong, resulting in biased estimates. To address this, we propose multivariate t-linear models (MTLMs) with an autoregressive moving-average (ARMA) covariance matrix. Modeling the covariance matrix for multivariate longitudinal data is difficult since the covariance matrix is high dimensional and must be positive-definite. To address these, we employ a modified ARMA Cholesky decomposition and hypersphere decomposition. Several simulation studies are conducted to demonstrate the performance, robustness, and flexibility of the proposed models. The proposed MTLMs with ARMA structured covariance matrix are applied to analyze the healthcare utilization data of patients with SLE.</p>","PeriodicalId":21879,"journal":{"name":"Statistics in Medicine","volume":" ","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Longitudinal Lupus Data Using Multivariate t-Linear Models.\",\"authors\":\"Eun Jin Jang, Anbin Rhee, Soo-Kyung Cho, Keunbaik Lee\",\"doi\":\"10.1002/sim.10248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Analysis of healthcare utilization, such as hospitalization duration and medical costs, is crucial for policymakers and doctors in experimental and epidemiological investigations. Herein, we examine the healthcare utilization data of patients with systemic lupus erythematosus (SLE). The characteristics of the SLE data were measured over a 10-year period with outliers. Multivariate linear models with multivariate normal error distributions are commonly used to evaluate long series of multivariate longitudinal data. However, when there are outliers or heavy tails in the data, such as those based on healthcare utilization, the assumption of multivariate normality may be too strong, resulting in biased estimates. To address this, we propose multivariate t-linear models (MTLMs) with an autoregressive moving-average (ARMA) covariance matrix. Modeling the covariance matrix for multivariate longitudinal data is difficult since the covariance matrix is high dimensional and must be positive-definite. To address these, we employ a modified ARMA Cholesky decomposition and hypersphere decomposition. Several simulation studies are conducted to demonstrate the performance, robustness, and flexibility of the proposed models. The proposed MTLMs with ARMA structured covariance matrix are applied to analyze the healthcare utilization data of patients with SLE.</p>\",\"PeriodicalId\":21879,\"journal\":{\"name\":\"Statistics in Medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistics in Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/sim.10248\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics in Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/sim.10248","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Analysis of Longitudinal Lupus Data Using Multivariate t-Linear Models.
Analysis of healthcare utilization, such as hospitalization duration and medical costs, is crucial for policymakers and doctors in experimental and epidemiological investigations. Herein, we examine the healthcare utilization data of patients with systemic lupus erythematosus (SLE). The characteristics of the SLE data were measured over a 10-year period with outliers. Multivariate linear models with multivariate normal error distributions are commonly used to evaluate long series of multivariate longitudinal data. However, when there are outliers or heavy tails in the data, such as those based on healthcare utilization, the assumption of multivariate normality may be too strong, resulting in biased estimates. To address this, we propose multivariate t-linear models (MTLMs) with an autoregressive moving-average (ARMA) covariance matrix. Modeling the covariance matrix for multivariate longitudinal data is difficult since the covariance matrix is high dimensional and must be positive-definite. To address these, we employ a modified ARMA Cholesky decomposition and hypersphere decomposition. Several simulation studies are conducted to demonstrate the performance, robustness, and flexibility of the proposed models. The proposed MTLMs with ARMA structured covariance matrix are applied to analyze the healthcare utilization data of patients with SLE.
期刊介绍:
The journal aims to influence practice in medicine and its associated sciences through the publication of papers on statistical and other quantitative methods. Papers will explain new methods and demonstrate their application, preferably through a substantive, real, motivating example or a comprehensive evaluation based on an illustrative example. Alternatively, papers will report on case-studies where creative use or technical generalizations of established methodology is directed towards a substantive application. Reviews of, and tutorials on, general topics relevant to the application of statistics to medicine will also be published. The main criteria for publication are appropriateness of the statistical methods to a particular medical problem and clarity of exposition. Papers with primarily mathematical content will be excluded. The journal aims to enhance communication between statisticians, clinicians and medical researchers.